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Abstract 
Background: Diagnostic accuracy measures (DAMs) are widely used in evaluating medical 

diagnostic tests, yet their uncertainty is often underreported or inconsistently quantified, which can 
bias threshold-based decisions in clinical practice. 

Methods: We developed a computational framework to estimate the measurement, sampling, and 

combined uncertainty of sixteen DAMs for threshold-based screening or diagnostic tests under three 
measurand distributional models: normal, lognormal, and gamma. Measurement uncertainty is 
modelled with linear and nonlinear heteroscedastic functions. Uncertainty is propagated using a 
first-order Taylor-series expansion. Optimality conditions are derived numerically where applicable. 
The framework has been implemented in the freely available program DiagAccU, in Wolfram 
Language, allowing parameter specification and estimation and plotting of the DAMs and their 
uncertainties and confidence intervals (CIs). 

Results: We used fasting plasma glucose for diabetes diagnosis as an illustrative case study. At 

extreme thresholds, ratio-type measures showed widened CIs. Agreement, association, and 
concordance based indices exhibited comparatively stable behaviour and typically attained interior 
optima. Confirmatory objectives favoured higher thresholds emphasising specificity, whereas 
exclusionary objectives favoured lower thresholds emphasising sensitivity. These findings support 
reporting threshold-wise confidence intervals and aligning cut-off point selection with the intended 
clinical objective. 

Conclusions: This framework offers a novel integrated, diagnostic threshold based approach for 

estimating uncertainty across a broad spectrum of DAMs, promoting reproducibility and uptake in 
laboratory medicine and diagnostic research, and directly supporting clinical decision-making for 
confirmatory diagnosis, diagnosis for exclusion, and triage.  
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1. Introduction 
Medical diagnosis is the process of identifying a disease by analysing its distinctive characteristics 
through abduction, deduction, and induction [1]. The term diagnosis, from the Greek διάγνωσις 
(discernment) [2], reflects the central role of distinguishing between healthy and diseased states in 
individuals. In probabilistic terms, diagnosis can be defined as the stochastic mapping of symptoms, 
signs, and laboratory or imaging findings onto a specific disease state, informed by established 
medical knowledge. 

 

Figure 1. Probability density functions plots of fasting plasma glucose (FPG) in a diabetic (diseased) 
and nondiabetic (nondiseased) population. 

In laboratory medicine, this process is often formalised through in vitro diagnostic tests that act as 
binary classifiers. For a given measurand, values are compared to a diagnostic threshold 𝑡, which 

dichotomises results into positive (𝑇) and negative outcomes (𝑇̅) [3] (refer to Figure 1). While 
operationally simple, this approach introduces uncertainty because the distributions of measurand 

values in diseased (𝐷) and nondiseased populations (𝐷̅) usually overlap, leading to inevitable 
misclassifications. Nevertheless, dichotomisation has transformed clinical decision-making by 
mapping continuous biological evidence into actionable categories, such as whether to initiate or 
withhold treatment [4]. 

1.1. Diagnostic accuracy measures (DAMs) 
The correctness of this threshold-based classification (refer to Table 1) is evaluated using DAMs. 
Although many DAMs exist [5], a smaller subset is most widely used in clinical research and practice.  

Sixteen DAMs were considered for this study, spanning probability-based, predictive, odds and 
likelihood, concordance, and agreement indices (refer to Section 2.2. DAMs) . Together, they capture 
complementary aspects of diagnostic decision-making. 

Table 1: 2x2 contingency table 

 
populations 

nondiseased (𝐷̅) diseased (D) 

te
st

 
re

su
lt

s 

negative (𝑇̅) true negative (TN) false negative (FN) 

positive (𝑇) false positive (FP) true positive (TP) 

 

Within this framework, two thresholding strategies are especially relevant to clinical practice. 
Confirmatory diagnosis refers to applying a higher threshold that gives precedence to specificity, 
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ensuring that positive results are rarely false and strengthening the confidence with which disease is 
confirmed. In contrast, exclusionary diagnosis or diagnosis for exclusion refers to applying a lower 
threshold that gives precedence to sensitivity, ensuring that negative results are rarely false and 
strengthening the confidence with which disease is ruled out. These complementary approaches 
illustrate how different DAMs support distinct clinical objectives. 

1.2. Uncertainty 
Beyond point estimates, however, DAMs are inherently uncertain [6]. From a metrological 
perspective, uncertainty represents the range of values that could reasonably be attributed to a 
measure given finite data and imperfect measurement. Two sources are particularly relevant: 
sampling uncertainty, which arises from limited sample sizes, and measurement uncertainty, which 
reflects analytical imprecision of the test [7–9]. Both contribute to the dispersion of DAMs and may 
alter clinical interpretation[10]. Yet in applied studies, uncertainty is often incompletely reported, 
limited to standard errors of 𝑆𝑒 and 𝑆𝑝, or entirely absent for derived measures such as 𝐿𝑅+, 𝐷𝑂𝑅, or 
𝑀𝐶𝐶. 

1.3. Measurand distributions 
The distributional assumptions underlying measurand values further influence DAM estimation. 
Although normal models are common, biological variables often exhibit skewness or heavy tails, 
making lognormal or gamma distributions more realistic alternatives [11, 12]. Incorporating these 
distributions allows more faithful representation of measurand behaviour and facilitates uncertainty 
estimation across a wider range of diagnostic contexts. 

The aim of this work is to present a unified, diagnostic threshold–based computational framework 
that integrates estimation, uncertainty quantification, and optimisation across sixteen DAMs under 
normal, lognormal, and gamma distributional assumptions. By explicitly modelling both sampling 
variability and measurement imprecision, we provide an approach that supports clinically relevant 
threshold selection for confirmatory diagnosis, diagnosis for exclusion, and triage. 

2. Methods 

2.1. Overview 
We developed a computational framework extending prior work on uncertainty estimation for DAMs 
of threshold-based tests [11]. This framework incorporates three parametric models for measurand 
distributions commonly encountered in laboratory medicine—normal, lognormal, and gamma—and 
accommodates both homoscedastic and linear and nonlinear heteroscedastic measurement 
uncertainty functions. 

The framework is implemented in the program DiagAccU, which estimates sampling, measurement, 
and combined uncertainties for sixteen DAMs and their confidence intervals (CIs). Uncertainty 
propagation follows the first-order Taylor-series approach specified in the Guide to the Expression of 
Uncertainty in Measurement (GUM) [13] and its adaptation for laboratory medicine [7] 

2.2. DAMs 
For this study, the following 16 DAMs were considered: sensitivity (𝑆𝑒), specificity (𝑆𝑝), overall 
diagnostic accuracy (ODA), positive predictive value (𝑃𝑃𝑉), negative predictive value (𝑁𝑃𝑉), 
diagnostic odds ratio (𝐷𝑂𝑅), likelihood ratio for a positive result (𝐿𝑅+), likelihood ratio for a negative 
result (𝐿𝑅−), Youden’s index (𝐽𝑆), Euclidean distance (𝐸𝐷), concordance probability (𝐶𝑍), Fowlkes–
Mallows index (FMI), Cohen’s kappa coefficient (𝐶𝜅), prevalence-adjusted bias-adjusted kappa 
(𝑃𝐴𝐵𝐴𝐾), F1 score (𝐹1𝑆) , and Matthews correlation coefficient (𝑀𝐶𝐶) [14] (refer to Appendix A.3 
and Supplemental file II: DiagAccUCalculations.nb.). 
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2.3. Measurand distributions 
For diseased (𝐷) and nondiseased (𝐷̅) populations, the measurand distribution are modelled as 
normal, lognormal, or gamma. Parameters (𝜇, 𝜎, 𝑛) were either estimated from empirical data or 
specified by the user. 

2.4. Measurement and sampling uncertainty 
Measurement uncertainty 𝑢𝑚(𝑡) was represented using either a constant contribution or a linear or 
nonlinear magnitude-dependent function, reflecting homoscedastic or heteroscedastic assay profiles 
[13]. Sampling uncertainty for means and variances was derived from the central limit theorem and 
chi-squared distribution [15–17], with prevalence uncertainty approximated by Agresti–Coull 
intervals [18]. Combined uncertainty was propagated through first-order Taylor expansions [13], 
with effective degrees of freedom estimated by the Welch–Satterthwaite formula [19, 20]. Expanded 
uncertainties and CIs were derived accordingly. Full derivations are provided in Appendix A.4 and in 
Supplemental file II: DiagAccUCalculations.nb. 

2.5. Optimisation 
Optimisation was performed numerically for 𝑂𝐷𝐴, 𝐽𝑆, 𝐸𝐷, 𝐶𝑍, 𝐹𝑀𝐼, 𝐶𝜅, 𝑃𝐴𝐵𝐴𝐾, 𝐹1𝑆, 𝑎𝑛𝑑 𝑀𝐶𝐶.  

2.6. Software implementation 
The program DiagAccU was implemented in Wolfram Language (Wolfram Mathematica® v14.3). It is 
distributed as a Wolfram Language notebook (.nb), executable in Wolfram Player® or 
Mathematica®. DiagAccU is available in Supplemental File I (DiagAccU.nb) 

Users can specify sample sizes and statistics, uncertainty models, and prevalence. The program 
outputs tables and plots of DAMs with their sampling, measurement, and combined uncertainties, as 
well as CIs and optimal thresholds. 

Figure 2 illustrates a simplified interface flowchart. More detailed interface documentation is 
available in Supplemental File III (DiagAccUInterface.pdf), while software specifications are detailed 
in Appendix A.6. 
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Figure 2. A simplified interface flowchart of the program DiagAccU. 
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3. Results 

3.1. Illustrative case study 
We applied the framework to fasting plasma glucose (FPG) for diagnosing diabetes mellitus, using 
oral glucose tolerance testing (OGTT) as the reference standard  [21], in adults aged 65–68 years 
from the National Health and Nutrition Examination Survey (NHANES) 2005–2016 (n = 414) [22]. 
Diabetes prevalence in this subgroup was 12.6% (52/414) [23]. FPG values for diabetic and 
nondiabetic participants were well modelled by lognormal distributions  using the maximum 
likelihood estimation method [27]. Measurement uncertainty was estimated by nonlinear least 
squares regression [28, 29] from 1,350 QC samples and modelled with a nonlinear heteroscedastic 
function (constant term b₀ and proportionality term b₁) (refer to Appendix A.5 ). 

Figure 3 presents the estimated PDFs of FPG in the diabetic and nondiabetic populations, under the  
lognormal assumption (with negligible measurement uncertainty), alongside histograms of the 
respective NHANES datasets. 

Results of the application of the program on the illustrative case study dataset are presented in 
Figures 4-12. All figures use the settings in Table 2. The selected diagnostic threshold 𝑡 = 126 mg/dl 
of Figures 6 and 9 is the American Diabetes Association (ADA) diagnostic threshold of FPG for 
diabetes (refer to Figure 1). 

 

Figure 3. The estimated PDFs of the FPG (mg/dL) in diabetic and nondiabetic participants, assuming 
negligible measurement uncertainty. 
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Table 2. The settings of the program DiagAccU for the figures 4-12 

 Units Fig 4 Fig 5 Fig 6 Fig 7-8 Fig 9 Fig 10 Fig 11 Fig 12 

𝑡 mg/dL 
91.0– 
173.0 

126 - 
91.0– 
173.0 

91.0– 
173.0 

126 126 - 

𝜇𝐷 mg/dL 136.0 136.0 136.0 136.0 136.0 136.0 136.0 136.0 

𝜎𝐷 mg/dL 36.6 17.7 17.7 17.7 17.7 17.7 17.7 17.7 

𝜇𝐷 mg/dL 102.2 102.2 102.2 102.2 102.2 102.2 102.2 102.2 

𝜎𝐷 mg/dL 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 

𝑣  0.126 
0.001-
0.999 

0.126 0.126 0.126 0.126 0.126 0.126 

𝑛𝑈      1350  1350 1350 

𝑏0  - - - 0.8124 0.8124 - 0.8124 0.8124 

𝑏1  - - - 0.0119 0.0119 - 0.0119 0.0119 

p  - - - - 0.95 - 0.95 0.95 

𝑑𝐷 lognormal 

normal 

lognormal 

gamma 

lognormal lognormal 

𝑑𝐷 lognormal 

normal 

lognormal 

gamma 

lognormal lognormal 

3.2. Threshold-dependent profiles 
Across operating diagnostic thresholds 𝑆𝑒 decreased monotonically with diagnostic threshold 𝑡, 
while 𝑆𝑝 increased to a high plateau (refer to Figure 4). 𝑃𝑃𝑉 increased with 𝑡, whereas 𝑁𝑃𝑉 was high 
at low 𝑡 and declined thereafter. 𝑂𝐷𝐴 rose rapidly from low 𝑡, plateaued and showed a slight late 
downturn. Ratio-type indices exhibited tail amplification: 𝐷𝑂𝑅 and 𝐿𝑅⁺ increased sharply at high 𝑡, 
whereas 𝐿𝑅− attained a shallow interior minimum and then increased. Association and agreement 
indices showed interior optima: 𝐽𝑆, 𝐶𝑍, 𝐶𝜅, 𝐹𝑀𝐼, 𝐹1𝑆, and 𝑀𝐶𝐶 displayed interior maxima, while 𝐸𝐷 
showed a distinct interior minimum. 𝑃𝐴𝐵𝐴𝐾 transitioned from negative values at the lowest 𝑡 to a 
broad positive plateau at higher 𝑡. 
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Figure 4. The 16 DAMs versus threshold 𝑡, with the settings of the program in Table 2. 

3.3. Prevalence-dependent profiles 
At a fixed diagnostic threshold, predictive values were strongly prevalence-dependent (refer to 
Figure 5): 𝑃𝑃𝑉 increased steeply at low 𝜈 and approached an upper plateau, whereas 𝑁𝑃𝑉 decreased 
monotonically toward zero. 𝑂𝐷𝐴 declined approximately linearly with increasing 𝜈, reflecting 
increasing class imbalance. 𝐹𝑀𝐼 and 𝐹1𝑆 rose steeply at low 𝜈 and then levelled. In contrast, 𝐶𝜅 and 
the 𝑀𝐶𝐶 were unimodal, each attaining an interior maximum at moderate 𝜈 and decreasing at high 𝜈. 
𝑃𝐴𝐵𝐴𝐾 decreased roughly linearly across the range of 𝜈.  

These patterns illustrate the strong prevalence dependence of predictive values and 𝐹-type 
measures, the near-linear decrease of 𝑂𝐷𝐴 with increasing class imbalance, and the interior-
optimum behaviour of association metrics such as 𝐶𝜅 and 𝑀𝐶𝐶. 

 

Figure 5. Positive predictive value (𝑃𝑃𝑉), negative predictive value (𝑁𝑃𝑉), overall diagnostic 
accuracy (𝑂𝐷𝐴), Fowlkes–Mallows index (𝐹𝑀𝐼), Cohen’s kappa coefficient (𝐶𝜅), prevalence-adjusted 
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bias-adjusted kappa (𝑃𝐴𝐵𝐴𝐾), F1 score (𝐹1𝑆), and Matthews correlation coefficient (𝑀𝐶𝐶) versus 
prevalence of diabetes 𝑣, with the settings of the program in Table 2. 

3.4. DAM relations 
Pairwise relations between measures (refer to Figure 6)  were frequently non-bijective across 𝑡. 
Nearly monotone relations were observed for 𝐹1𝑆 versus 𝐹𝑀𝐼 (increasing) and 𝐸𝐷 versus 𝐶𝑍 
(decreasing). Narrow loops—indicating multi-valued mappings as 𝑡 crossed low-to-high regions—
were evident for and 𝐶𝜅 versus 𝐽𝑆, 𝑂𝐷𝐴 versus 𝐽𝑆, 𝐶𝜅 versus 𝑀𝐶𝐶, and 𝐹1𝑆 versus 𝐶𝑍. 𝐸𝐷 versus 
𝑂𝐷𝐴 showed a U-shaped relation with a clear interior minimum in 𝐸𝐷, and 𝑂𝐷𝐴 versus 𝐽𝑆 showed a 
late downturn of 𝑂𝐷𝐴 at high 𝐽𝑆. 𝐷𝑂𝑅 versus 𝑀𝐶𝐶 was highly non-linear, with a precipitous rise in 
𝐷𝑂𝑅 in the high-specificity tail for modest changes in 𝑀𝐶𝐶, underscoring the instability of ratio-type 
measures near boundary regions. 

 

Figure 6. Plots of overall diagnostic accuracy (𝑂𝐷𝐴) and Cohen’s kappa coefficient (𝐶𝜅) versus 
Youden’s index (𝐽𝑆), Euclidean distance (𝐸𝐷) versus  concordance probability (𝐶𝑍), F1 score (𝐹1𝑆) 
versus Fowlkes–Mallows index (𝐹𝑀𝐼), Cohen’s kappa coefficient (𝐶𝜅) and diagnostic odds ratio 
(𝐷𝑂𝑅) versus Matthews correlation coefficient (𝑀𝐶𝐶), Euclidean distance (𝐸𝐷) versus overall 
diagnostic accuracy (𝑂𝐷𝐴), and F1 score (𝐹1𝑆) versus concordance probability  (𝐶𝑍) , with the 
settings of the program in Table 2. 

3.5. Uncertainty 
The standard combined uncertainty 𝑢𝑐(𝑡) exhibited three patterns: 

a) Interior humps: 𝑢𝑐(𝑡) increased from low 𝑡, peaked mid-range, and declined for several 
measures (𝑆𝑒, 𝑂𝐷𝐴, 𝐽𝑆, 𝐸𝐷, 𝐶𝑍, 𝐹𝑀𝐼, 𝐶𝜅, 𝑃𝐴𝐵𝐴𝐾, 𝐹1𝑆, 𝑀𝐶𝐶).  

b) Monotone decrease: 𝑢𝑐(𝑡) declined with 𝑡 for 𝑆𝑝, 𝑁𝑃𝑉, and the 𝐿𝑅−.  
c) Right-tail escalation: 𝑢𝑐(𝑡) rose steeply at high 𝑡 for 𝐿𝑅⁺ and 𝐷𝑂𝑅.  

Component-wise, sampling uncertainty 𝑢𝑠(𝑡) dominated at low 𝑡 where diseased positives were 
scarce (notably 𝑁𝑃𝑉, and the 𝐿𝑅−), whereas measurement uncertainty 𝑢𝑚(𝑡) predominated in 
the upper tail (particularly for 𝐿𝑅⁺ and 𝐷𝑂𝑅). For 𝑃𝑃𝑉, 𝑢𝑚(𝑡) displayed a distinct interior 
maximum. 
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Figure 7. Standard sampling, measurement, and combined uncertainty of the sixteen DAMs versus 
threshold 𝑡, with the settings of the program in Table 2. 

3.6. Relative uncertainty 
The relative standard combined uncertainty (refer to Figure 8) generally decreased from low to 
interior 𝑡 and increased again in the right tail. For sensitivity, specificity, 𝑁𝑃𝑉, 𝑂𝐷𝐴, 𝐽𝑆, 𝐶𝑍, 𝐶𝜅, 
𝑃𝐴𝐵𝐴𝐾, and 𝑀𝐶𝐶, the combined curve closely tracked 𝑢𝑚(𝑡) indicating predominance of 
measurement error across most thresholds (with monotone declines for 𝑆𝑝, 𝑁𝑃𝑉, and 𝑂𝐷𝐴 related 
profiles and an increase for 𝑆𝑒). Ratio-type measures showed pronounced tail effects: for 𝐿𝑅−, 𝑢𝑠(𝑡) 
dominated at low 𝑡 and then fell rapidly; for 𝐿𝑅+ and 𝐷𝑂𝑅, relative uncertainties escalated sharply at 
high 𝑡 and were largely measurement-driven. 𝐸𝐷 showed an interior maximum, and 𝐹𝑀𝐼 and 𝐹1𝑆 
exhibited interior humps, consistent with larger relative uncertainty near their extrema. Overall, 
relative uncertainty was minimised at interior operating points for most non-ratio measures, 
whereas extremes accentuated uncertainty via sampling (low 𝑡) or measurement imprecision (high 
𝑡). 
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Figure 8. Relative standard sampling, measurement, and combined uncertainty of the sixteen DAMs 
versus threshold 𝑡, with the settings of the program in Table 2. 

3.7. CIs 
Figure 9 presents 95% CIs across operating diagnostic thresholds. Intervals widened for ratio-type 
measures; at lower 𝑡 for 𝐿𝑅− and at higher 𝑡 for 𝐿𝑅+ and 𝐷𝑂𝑅, consistent with denominator 
instability as specificity or sensitivity approaches 1 or 0. By contrast, the CIs of prevalence-invariant 
association and agreement indices are wider near their maxima (𝐽𝑆, 𝐶𝑍, 𝐹𝑀𝐼, 𝐶𝜅, 𝑃𝐴𝐵𝐴𝐾, 𝐹1𝑆 and 
𝑀𝐶𝐶) or near its minimum (𝐸𝐷). 
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Figure 9. CIs of the 16 DAMs versus threshold 𝑡, with the settings of the program in Table 2. 

3.8. Point estimates and CIs at a clinical threshold 
Point estimates and 95% CIs for all 16 DAMs are shown in Figures 10-11, at the ADA screening cut-
off of 126 mg/dL. 𝑃𝑃𝑉 was modest, reflecting the low prevalence of diabetes in this cohort, whereas 
𝑁𝑃𝑉 remained high. Agreement and concordance indices fell in the mid-range, indicating partial but 
clinically useful discrimination. 

 

Figure 10. Table of the point estimations of the DAMs for an FPG value 𝑡 = 126 mg/dL at prevalence 
𝑣 ≅ 0.126, with the other settings of the program in Table 2. 
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Figure 11. Table of the point estimations and the 95% CIs of the DAMs for an FPG value 𝑡 =
126 mg/dL at prevalence 𝑣 ≅ 0.126, with the other settings of the program in Table3. 

3.9. Optimal diagnostic thresholds 
Optimal thresholds for each DAM are summarised in Figure 12. 𝑆𝑒 and 𝑆𝑝 based optima clustered 
near the crossing of the class-conditional densities, while 𝐽𝑆 and 𝐸𝐷 identified nearby but distinct 
interior cut-offs. Confirmatory measures (𝐿𝑅+, 𝐷𝑂𝑅) were characterised by higher thresholds giving 
precedence to specificity; exclusionary measures (𝐿𝑅−) were characterised by lower thresholds 
giving precedence to sensitivity. Agreement and concordance indices selected balanced interior 
thresholds. These results confirm that no single threshold is universally optimal; choice should 
reflect the diagnostic objective. 
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Figure 12. Table of the optimal diagnostic thresholds (in mg/dl), the respective point estimations 
and the 95% CIs of the DAMs at prevalence 𝑣 ≅ 0.126, with the other settings of the program in Table 
2. 

4. Discussion 

4.1. Principal findings 
We synthesised sixteen DAMs within a unified, threshold-dependent framework and examined their 
behaviour under parametric modelling of measurand distributions in diseased and nondiseased 
populations.  Prevalence‑dependent measures (𝑃𝑃𝑉, 𝑁𝑃𝑉, 𝑂𝐷𝐴, 𝐹1𝑆, 𝐹𝑀𝐼) followed the anticipated 
monotonic responses to disease prevalence 𝑣. Across measures, uncertainty was not uniform over 
the decision axis. For most non-ratio type indices (e.g. 𝐽𝑆, 𝐶𝑍, 𝐶𝜅, 𝑃𝐴𝐵𝐴𝐾, 𝐹1𝑆, 𝑀𝐶𝐶) combined 
uncertainty tended to be minimised at interior thresholds, consistent with their interior optima. In 
contrast, at extreme thresholds, ratio-type measures showed widened CIs.  Decomposition of the 
combined uncertainty indicated that sampling variability predominated at low thresholds—where 
diseased positives were scarce—whereas measurement uncertainty predominated in the upper tail. 
At extreme thresholds, ratio-type measures showed widened CIs.  Consistent with diagnostic 
principles, confirmatory measures such as 𝐿𝑅+𝑎𝑛𝑑 𝐷𝑂𝑅 achieved their optima at higher thresholds, 
giving precedence to specificity, whereas measures used for diagnosis for exclusion (𝐿𝑅−) were 
characterised by lower thresholds, giving precedence to sensitivity. Importantly, optimal diagnostic 
thresholds 𝑡∗ differed systematically across measures.  

These results emphasise that threshold selection should be guided jointly by the intended clinical 
role and the local uncertainty profile, rather than by point estimates alone. 
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4.2. Relations between measures 
Our relational analyses highlighted complementary insights. Prevalence-invariant indices captured 
the intrinsic separation between diseased and nondiseased populations, while prevalence-dependent 
indices quantified post-test certainty. Reporting both families prevents misinterpretation of 
diagnostic accuracy as predictive value. Ratio measures (𝐿𝑅⁺, 𝐿𝑅⁻, 𝐷𝑂𝑅) and κ-type indices were 
unstable near boundaries, supporting the use of bounded measures such as 𝑀𝐶𝐶 as anchors. The 
contrast between 𝑂𝐷𝐴 and 𝐽𝑆 illustrated that threshold optimisation differs when guided by Bayes 
risk [24], which incorporates prevalence and costs, versus when assessed ignoring prevalence. 
Pairings such as 𝐸𝐷-𝐶𝑍 and 𝐹1𝑆-𝐹𝑀𝐼 provided complementary views of concordance, particularly 
under asymmetric 𝑆𝑒 and 𝑆𝑝 gains. 

4.3. Appraisal of the uncertainty estimation approach 
A key innovation of this work is the explicit partitioning of combined uncertainty into sampling and 
measurement components; the latter modelled via a heteroscedastic function 𝑢𝑚(𝑡). By partitioning 
overall uncertainty, the framework clarifies when analytical uncertainty dominates (e.g., at high 
thresholds affecting 𝐿𝑅+ and 𝐷𝑂𝑅) and when sampling uncertainty (e.g., at low thresholds with few 
diseased positives). 

Quantifying and partitioning diagnostic uncertainty is imperative in laboratory medicine to define 
analytical performance specifications [25], manage quality and risk [26, 27], and design and 
implement test accuracy studies. Enhancing assay precision and standardisation can, in turn, yield 
more reliable diagnosis and support more effective patient care. 

4.4. Potential sources of error and bias 
Several methodological caveats warrant consideration: 

a) Reference standard bias: Reliance on OGTT as a gold standard may introduce misclassification  
[28–36]. 

b) Distributional misspecification: Normal or lognormal assumptions are parsimonious but can be 
violated by latent mixtures [37], skewness differences, or heavy tails. Both unimodal and 
multimodal forms remain plausible [38–40]; model checking and sensitivity analyses are 
advisable. 

c) Prevalence handling: Spectrum (case-mix) effects between source and target populations 
undermine the transportability of disease prevalence. 

d) Boundary behaviour: Ratio measures exhibit unstable CIs at extreme thresholds, limiting 
interpretability; log-scale or Fieller-type intervals provide more reliable inference [41, 42]. 

e) Selection uncertainty: Reporting CIs at data-selected optimal thresholds understates uncertainty 
[43, 44]; bootstrap or cross-validated threshold re-estimation is recommended. 

f) Measurement uncertainty transferability: The fitted 𝑢𝑚(𝑡) may vary with matrix, lot, or subgroup; 
periodic validation is necessary. 

g) Dependence among estimators: Treating sample means and variances as independent can 
misstate uncertainty; likelihood-based or bootstrap methods better respect dependence [45–47]. 

h) Truncation and orientation: Forcing DAMs into parametric bounds or mis-specifying decision 
orientation can distort results; analyses should be carefully validated. 

4.5. Strengths of the framework 
This work provides several contributions: 

a) Comparability across DAMs: Expressing all sixteen measures as deterministic functions of 
{𝑡, 𝑛𝐷 , 𝑚𝐷, 𝑠𝐷 , 𝑛𝐷̅ , 𝑚𝐷̅, 𝑠𝐷̅}  permits their principled comparison and facilitates the derivation 
of thresholds 
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b) Explicit uncertainty decomposition: By modelling and propagating measurement uncertainty 
alongside sampling variability, the framework clarifies when analytical imprecision 
dominates. 

c) Analytic structure: While threshold optimisation is performed numerically, closed-form 
expressions enable analytic propagation of uncertainty, improving computational efficiency 
and interpretability. 

d) Reproducibility: Implementation in the Wolfram Language ensures transparent, auditable 
analyses under alternative assumptions or updated data. 

4.6. Originality and positioning 
To our knowledge, few applied studies on DAMs present an integrated framework that 
simultaneously:  

a) Models diseased and nondiseased distributions parametrically,  
b) Propagates heteroscedastic measurement uncertainty,  
c) Partitions combined uncertainty into sampling and measurement components, and  
d) Optimises thresholds across a wide spectrum of DAMs.  

While individual elements have precedents, their combined implementation and breadth appear 
uncommon. The accompanying software (DiagAccU) provides a wide range of plot types and 
comprehensive tables, extending beyond the capabilities of commonly used statistical packages. 
To the best of our knowledge neither of them offers this extensive range of plots and tables 
without requiring advanced statistical programming. 

4.7. Practical guidance 
The framework supports several recommendations for applied research and clinical reporting: 

a) Use thresholds aligned with diagnostic purpose: higher diagnostic thresholds for confirmatory 
diagnosis, lower for diagnosis for exclusion, balanced indices for screening. 

b)  Report uncertainty at both fixed and optimal thresholds, preferably with bootstrap or cross-
validated adjustment for selection. 

c)  Stabilise ratio measures by working on the log-scale and presenting one-sided bounds when 
clinically relevant. 

d) Periodically revalidate measurement-uncertainty models against quality control data to ensure 
applicability across time, matrices, and lots. 

4.8. Limitations and future directions 
Limitations include reliance on parametric distributional forms, use of first-order Taylor 
approximations for uncertainty propagation, neglect of measurement uncertainty model parameters, 
and conditional CIs at estimated optimal thresholds. Future work should explore semiparametric and 
mixture models, full parametric bootstrapping, cross-validated threshold selection, and 
generalisation to multi-class markers and decision-curve analysis. 

5. Conclusion 
This study introduced a unified, diagnostic threshold based computational framework for sixteen 
DAMs. The framework integrates point estimation, uncertainty quantification, and optimisation with 
respect to clinically meaningful objectives. By formulating each measure as a deterministic function 
of 𝑛𝐷, 𝑚𝐷 , 𝑠𝐷 , 𝑛𝐷̅, 𝑚𝐷̅ , 𝑎𝑛𝑑 𝑠𝐷̅ and by modelling class-conditional measurand distributions 
parametrically, the method generates smooth, interpretable profiles across diagnostic thresholds. 
Measurement uncertainty is incorporated through an explicit heteroscedastic model and propagated 
jointly with sampling variability, yielding CIs and threshold recommendations that transparently 
reflect both analytical imprecision and finite sample uncertainty. 

The empirical analyses showed that prevalence-dependent measures (𝑃𝑃𝑉, 𝑁𝑃𝑉, 𝑂𝐷𝐴, 𝐹1𝑆, 𝐹𝑀𝐼) 
varied as expected with disease prevalence, whereas prevalence-invariant measures remained 
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stable. The decomposition of uncertainty highlighted contexts where measurement uncertainty 
predominates (e.g., high-threshold regions where denominators approach zero) versus where 
sampling variability dominates (e.g., low-threshold regions with limited diseased cases). Optimal 
thresholds vary systematically across DAM families: confirmatory diagnosis measures (e.g., 
𝐿𝑅+, 𝐷𝑂𝑅) were characterised by higher thresholds, giving precedence to specificity; diagnosis for 
exclusion measures (e.g., 𝐿𝑅−) were characterised by lower thresholds, giving precedence to 
sensitivity; and agreement and association indices (e.g., 𝐽𝑆, 𝐶𝑍, 𝐹𝑀𝐼, 𝐹1𝑆, 𝐶𝜅, 𝑃𝐴𝐵𝐴𝐾, 𝑀𝐶𝐶) selected 
interior thresholds balancing errors.  

The framework’s methodological strengths include its unified taxonomy across heterogeneous 
measures, explicit treatment of measurement uncertainty alongside sampling variability, and 
transparent implementation in the Wolfram Language. Together, these features enable principled 
selection of thresholds for confirmatory diagnosis versus diagnosis for exclusion, with explicit trade-
offs and uncertainty statements aligned to clinical decision-making. 

Nevertheless, inferences remain contingent on appropriate distributional assumptions, correct 
orientation of decision rules, and robust handling of prevalence. Ratio-based measures require 
caution near boundary conditions, and threshold selection uncertainty should be explicitly 
addressed. Periodic validation of the measurement uncertainty model against quality control data is 
recommended to ensure transferability across settings and time. 

In conclusion, this framework offers a coherent, practical pathway from parametrically fitted medical 
measurand distributions in diseased and nondiseased groups to a comparison of diagnostic 
objectives with explicitly quantified uncertainty. By making clear the respective roles of disease 
prevalence, analytical imprecision, and threshold selection, it enables transparent reporting and 
supports more reliable clinical decisions in both laboratory and bedside settings. Future work should 
evaluate semiparametric and mixture formulations, extend to multi-marker panels, and incorporate 
decision-curve or net-benefit analyses to link threshold choices to expected clinical utility. 

6. Supplemental material  
The following supplemental files are available for download as a ZIP archive at: 
https://www.hcsl.com/Supplements/SDAMU.zip (accessed on September 26, 2025): 

a) Supplemental File I:  
DiagAccU.nb: The program as a Wolfram Mathematica Notebook.  

b) Supplemental File II:  
DiagAccUCalculations.nb: The calculations for the estimation of the DAMs and their standard 
uncertainty in a Wolfram Mathematica Notebook. 

c) Supplemental File III:  
DiagAccUInterface.pdf: A brief documentation of the interface of the program.  
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9. Appendices 

A.1. List of abbreviations 
DAM: diagnostic accuracy measure 

OGTT: oral glucose tolerance test 

ADA: American Diabetes Association 

ROC: Receiver operating characteristic 

A.2. Notation 
 A.2.1. Populations 
D̅: nondiseased population 

D: diseased population 

 A.2.2. Test outcomes 
𝑇̅: negative test result 

T : positive test result 

TN : true negative test result 

TP : true positive test result 

FN : false negative test result 

FP : false positive test result 

 A.2.3. Diagnostic accuracy measures 
𝑆𝑒 : sensitivity 

𝑆𝑝 : specificity 

𝑃𝑃𝑉 : positive predictive value  

𝑁𝑃𝑉 : negative predictive value 

𝑂𝐷𝐴 : overall diagnostic accuracy 

𝐷𝑂𝑅 : diagnostic odds ratio 

𝐿𝑅+: likelihood ratio for a positive test result 

𝐿𝑅−: likelihood ratio for a negative test result 

𝐽𝑆 : Youden's index  

𝐸𝐷 : Euclidean distance  

𝐶𝑍 : CZ  

𝐹𝑀𝐼: Fowlkes–Mallows index 

𝐶𝜅 : Cohen’s kappa coefficient  

𝑃𝐴𝐵𝐴𝐾 : Prevalence-adjusted bias-adjusted kappa 

𝐹1𝑆 : F1 Score  

𝑀𝐶𝐶: Matthews correlation coefficient 

A.2.4. Parameters 
𝜇̂𝑃: estimate of the mean of the measurand of a test in the population P 

𝜎̂𝑃: estimate of the standard deviation of the measurand of a test in the population P 
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𝑚𝑃: mean of the measurand of a test in a sample of the population P 

𝑠𝑃: standard deviation of the measurand of a test in a sample of the population P 

𝑛𝑃: size of a sample of the population P 

𝑣 : prevalence of the disease 

t : diagnostic threshold of a test 

𝑡∗: optimal diagnostic threshold of a test 

p : confidence level 

A.2.5. Functions and relations 
𝑢𝑠(𝑥) : standard sampling uncertainty of x 

𝑢𝑚(𝑥): standard measurement uncertainty of x 

𝑢𝑐(𝑥) : standard combined uncertainty of 𝑥 

𝑢𝑖(𝑥): the ith component of the standard combined uncertainty of 𝑥 

𝑓(𝑥, 𝜇, 𝜎): probability density function of a distribution with mean μ and standard deviation σ, 
evaluated at 𝑥 

𝐹(𝑥, 𝜇, 𝜎): cumulative distribution function of a probability distribution with mean μ and standard 
deviation σ, evaluated at 𝑥 

𝑃(𝑎): probability of an event a 

𝑃(𝑎|𝑏): probability of an event a given the event b 

𝐶𝐼𝑝(𝑥): confidence interval of 𝑥 at confidence level p 

𝑉𝑎𝑟(𝑥): variance of 𝑥 

𝐹−1(… ): the inverse function F 

A.3. DAMs 
A.3.1. Descriptions 
Table A.T.1 presents short descriptions of the 16 DAMs 
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Table A.T.1: DAMs short descriptions 

Sensitivity (𝑆𝑒): Probability that the test is positive among diseased individuals. Higher values 
reduce false negatives and support diagnosis for exclusion; range 0–1; optimised by maximisation. 
Specificity (𝑆𝑝): Probability that the test is negative among nondiseased individuals. Higher values 
reduce false positives and support confirmatory diagnosis; range 0–1; optimised by maximisation. 
Overall Diagnostic Accuracy (𝑂𝐷𝐴): Proportion of correct classifications at a given threshold; 
depends on disease prevalence. Targets overall correctness given the prevalence; range 0–1. 
Positive Predictive Value (𝑃𝑃𝑉): Probability of disease among those with a positive test result. 
Central for confirmatory diagnosis; increases with higher prevalence and stronger test 
performance; range 0–1. 
Negative Predictive Value (𝑁𝑃𝑉): Probability of no disease among those with negative test results. 
Central for diagnosis for exclusion; decreases as prevalence rises when test characteristics are 
fixed; range 0–1. 
Diagnostic Odds Ratio (𝐷𝑂𝑅): Odds of a positive test in diseased individuals divided by the odds in 
nondiseased individuals; does not depend on prevalence. Higher values indicate stronger 
separation of groups; unstable near boundary regions; lower‑bounded by zero and unbounded 
above. 
Likelihood Ratio for a Positive Test (𝐿𝑅+): Multiplicative change in disease odds produced by a 
positive result; independent of prevalence. Useful for confirmatory diagnosis; larger values convey 
stronger evidence in favour of disease (context‑dependent thresholds 𝑡 > 10 are often considered 
strong). 
Likelihood Ratio for a Negative Test (𝐿𝑅−): Multiplicative change in disease odds produced by a 
negative result; independent of prevalence. Useful for diagnosis for exclusion; smaller values 
convey stronger evidence against disease (context‑dependent thresholds 𝑡 < 0.1 are often 
considered strong). 
Youden’s Index or 𝐽 statistic (𝐽𝑆): Prevalence‑invariant index that rewards simultaneous increases 
in 𝑆𝑒 and 𝑆𝑝. Common criterion for single‑threshold selection; higher is better; range −1 to 1 
(typically 0–1 in practice). 
Euclidean Distance to the Ideal Point (𝐸𝐷): Distance from the ideal classifier (top‑left corner) in 

receiver operating characteristic (ROC) space; optimised by minimisation; range 0 to √2; robust to 
prevalence but sensitive to the joint behaviour of 𝑆𝑒 and 𝑆𝑝.  
CZ (𝐶𝑍): Measure that increases when both sensitivity and 𝑆𝑝 are simultaneously high. 
Complements JS by emphasizing joint elevation of 𝑆𝑒 and 𝑆𝑝; prevalence‑invariant; higher is 
better. 
Fowlkes–Mallows Index (𝐹𝑀): Balance measure that increases with both 𝑃𝑃𝑉 and 𝑆𝑒. Useful when 
confirming positives is important while maintaining detection among diseased cases; range 0–1. 
Cohen’s Kappa Coefficient (𝐶𝜅): Chance‑corrected agreement between the test result and the true 
disease state. Interpretable on −1 to 1; sensitive to class imbalance; complements accuracy‑type 
measures by adjusting for chance agreement. 
Prevalence‑Adjusted Bias‑Adjusted Kappa (𝑃𝐴𝐵𝐴𝐾): Agreement index adjusted for both 
prevalence and marginal bias, derived from the observed agreement. Stabilises agreement 
estimates when prevalence is extreme, or marginals are unbalanced; range −1 to 1. 
F1 Score (𝐹1𝑆): Balance measure that increases when both 𝑃𝑃𝑉 and 𝑆𝑒 are high. Useful when both 
missed cases and false alarms carry consequences; range 0–1. 
Matthews Correlation Coefficient (𝑀𝐶𝐶): Correlation between the test classification and the 
disease status, accounting for all four cells of the contingency table. Robust to class imbalance; 
range −1 to 1; complements 𝐶𝜅 by not relying on an explicit chance‑agreement model. 

    Note: ROC curve: The parametric plot of 𝑆𝑒 versus (1 − 𝑆𝑝) as threshold 𝑡 varies 
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A.3.2. Definitions 

Tables A.T.2. and A.T.3. present mathematical definitions of the sixteen DAMs. 
Table A.T.2: Mathematical definitions of DAMs 

measure natural frequency definition probability definition definition versus 
𝑺𝒆, 𝑺𝒑, 𝒂𝒏𝒅 𝒗 

𝑆𝑒 𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

𝑃(𝑇|𝐷) 𝑆𝑒 

𝑆𝑝 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 𝑃(𝑇|𝐷) 𝑆𝑝 

𝑃𝑃𝑉 𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 

𝑃(𝐷|𝑇) 𝑆𝑒 𝑣

𝑆𝑒 𝑣 + (1 − 𝑆𝑝)(1 − 𝑣)
 

𝑁𝑃𝑉 𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 𝑃(𝐷|𝑇) 𝑆𝑝 (1 − 𝑟)

𝑆𝑝 (1 − 𝑣) + (1 − 𝑆𝑒)𝑣
 

𝑂𝐷𝐴 𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃
 𝑃(𝐷) 𝑃(𝑇|𝐷) + 𝑃(𝐷) 𝑃(𝑇|𝐷) 𝑆𝑒 𝑣 + 𝑆𝑝 (1 − 𝑣) 

𝐷𝑂𝑅 𝑇𝑁 𝑇𝑃

𝐹𝑁 𝐹𝑃
 

𝑃(𝑇|𝐷)

𝑃(𝑇|𝐷)

𝑃(𝑇|𝐷)

𝑃(𝑇|𝐷)

 

𝑆𝑒
1 − 𝑆𝑒
1 − 𝑆𝑝

𝑆𝑝

 

𝐿𝑅+ 𝑇𝑃 (𝐹𝑃 + 𝑇𝑁)

𝐹𝑃 (𝐹𝑁 + 𝑇𝑃)
 

𝑃(𝑇|𝐷)

𝑃(𝑇|𝐷)
 

𝑆𝑒

1 − 𝑆𝑝
 

𝐿𝑅− 𝐹𝑁 (𝐹𝑃 + 𝑇𝑁)

𝑇𝑁 (𝐹𝑁 + 𝑇𝑃)
 

𝑃(𝑇|𝐷)

𝑃(𝑇|𝐷)
 

1 − 𝑆𝑒

𝑆𝑝
 

𝐽𝑆 𝑇𝑁 𝑇𝑃 − 𝐹𝑁 𝐹𝑃

(𝑇𝑁 + 𝐹𝑃)(𝐹𝑁 + 𝑇𝑃)
 𝑃(𝑇|𝐷) +  𝑃(𝑇|𝐷) − 1 𝑆𝑒 + 𝑆𝑝 − 1 

𝐸𝐷 

√(
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
)

2

+ (
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
)

2

 
√𝑃(𝑇|𝐷)

2
+ 𝑃(𝑇|𝐷)

2
 

√(1 − 𝑆𝑒)2 + (1 − 𝑆𝑝)2 

𝐶𝑍 𝑇𝑁  𝑇𝑃 

(𝑇𝑁 + 𝐹𝑃)(𝐹𝑁 + 𝑇𝑃)
 𝑃(𝑇|𝐷) 𝑃(𝑇|𝐷) 𝑆𝑒 𝑆𝑝 
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Table A.T.3: Mathematical definitions of DAMs 1 

measure natural frequency definition probability definition definition versus 𝑺𝒆, 𝑺𝒑, 𝒂𝒏𝒅 𝒗 

𝐹𝑀𝐼 𝑇𝑃

√(𝐹𝑁 + 𝑇𝑃)(𝐹𝑃 + 𝑇𝑃)
 √𝑃(𝑇|𝐷)𝑃(𝐷|𝑇) 

√
𝑆𝑒2𝑣

(1 − 𝑆𝑝)(1 − 𝑣) + 𝑆𝑒 𝑣
 

𝐶𝜅 𝑇𝑃 + 𝑇𝑁
(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)

−
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)2

1 −
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)2

 

𝑃(𝐷|𝑇)𝑃(𝑇) + (1 − 𝑃(𝑇̅|𝐷̅)𝑃(𝑇̅))𝑃(𝑇) +

((1 − 𝑃(𝐷|𝑇))𝑃(𝑇) + 𝑃(𝑇̅|𝐷̅)𝑃(𝑇̅)) 𝑃(𝑇̅)  

2(−1 + 𝑆𝑒 + 𝑆𝑝)(−1 + 𝑣)𝑣

−1 + 𝑆𝑝 − (−2 + 𝑆𝑒 + 3𝑆𝑝)𝑣 + 2(−1 + 𝑆𝑒 + 𝑆𝑝)𝑣2
 

𝑃𝐴𝐵𝐴𝐾 𝑇𝑃 + 𝑇𝑁 − 𝐹𝑃 − 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

2(𝑃(𝐷|𝑇)𝑃(𝑇) + 𝑃(𝑇̅|𝐷̅)𝑃(𝑇̅)) − 1 −1 + 2(𝑆𝑝(1 − 𝑣) + 𝑆𝑒𝑣) 

𝐹1𝑆 2𝑇𝑃

𝐹𝑁 + 𝐹𝑃 + 2𝑇𝑃
 

2𝑃(𝑇|𝐷)𝑃(𝐷|𝑇)

𝑃(𝑇|𝐷) + 𝑃(𝐷|𝑇)
 

2Se 𝑣

1 + 𝑆𝑝 (−1 + 𝑣) + 𝑆𝑒 𝑣
 

𝑀𝐶𝐶 𝑇𝑃 𝑇𝑁 − 𝐹𝑃 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

𝑃(𝐷|𝑇) − 𝑃(𝐷)

√𝑃(𝐷)(1 − 𝑃(𝐷))𝑃(𝑇)(1 − 𝑃(𝑇))

 
−((1 − 𝑆𝑒)(1 − 𝑣)) + 𝑆𝑝𝑣 + (−1 + se + 𝑆𝑝)(1 − 𝑣)𝑣

√(1 − 𝑣)𝑣((1 − 𝑆𝑝)(1 − 𝑣) + 𝑣)(1 − 𝑣 + (1 − 𝑆𝑒)𝑣)

 

Note: 𝑃(𝑇) = 𝑃(𝑇|𝐷)𝑃(𝐷) + 𝑃(𝑇|𝐷̅)𝑃(𝐷̅), 𝑃(𝑇̅) = 𝑃(𝑇̅|𝐷̅)𝑃(𝐷̅) + 𝑃(𝑇̅|𝐷)𝑃(𝐷)2 
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A.3.3. Classification 

a) Fundamental measures 
 𝑆𝑒, 𝑆𝑝, 𝑃𝑃𝑉, 𝑁𝑃𝑉, 𝑂𝐷𝐴. 

b) Composite indices 
𝐷𝑂𝑅, 𝐿𝑅+, 𝐿𝑅−, 𝐽𝑆. 

c) Extended indices 
𝐹𝑀, 𝑀𝐶𝐶, 𝐶𝜅, 𝑃𝐴𝐵𝐴𝐾. 

d)  Distance & concordance measures 
𝐸𝐷, 𝐶𝑍, 𝐹1𝑆. 

e) Multi‑axis classification 
Table A.T.4. classifies the sixteen measures along multiple orthogonal axes (prevalence dependence, 
conditionality, and conceptual family). 

Table A.T.4: Core DAMs’ classification axes  

Measure Prevalence 
invariant 

Disease-
conditional 

Test-
conditional 

Error-
based 

Information-
based 

Association-
based 

Sensitivity (𝑆𝑒) ✓ ✓ — ✓ — — 

Specificity (𝑆𝑝) ✓ ✓ — ✓ — — 

Overall Diagnostic 
Accuracy (𝑂𝐷𝐴) 

— — — ✓ — — 

Positive Predictive 
Value (𝑃𝑃𝑉) 

— — ✓ ✓ — — 

Negative Predictive 
Value (𝑁𝑃𝑉) 

— — ✓ ✓ — — 

Diagnostic Odds 
Ratio (𝐷𝑂𝑅) 

✓ ✓ — — ✓ ✓ 

Likelihood Ratio 
Positive (𝐿𝑅+) 

✓ ✓ — — ✓ — 

Likelihood Ratio 
Negative (𝐿𝑅−) 

✓ ✓ — — ✓ — 

Youden’s Index (𝐽𝑆) ✓ ✓ — ✓ — — 

Euclidean Distance 
(𝐸𝐷) 

✓ ✓ — ✓ — — 

CZ (𝐶𝑍) ✓ ✓ — ✓ — — 

Fowlkes–Mallows 
Index (𝐹𝑀𝐼) 

— Hybrid Hybrid ✓ — — 

Cohen’s Kappa 
Coefficient (𝐶𝜅) 

— — — — — ✓ 

Prevalence‑Adjusted 
Bias‑Adjusted 

Kappa (𝑃𝐴𝐵𝐴𝐾) 

— — — — — ✓ 

F1 Score (𝐹1𝑆) — Hybrid Hybrid ✓ — — 

Matthews 
Correlation 

Coefficient (𝑀𝐶𝐶) 

— — — — — ✓ 

Note: Hybrid: depends jointly on 𝑆𝑒/𝑆𝑝 and on 𝑃𝑃𝑉/𝑁𝑃𝑉. 

A.4. Uncertainty 
A.4.1. Measurement Uncertainty 
Measurement uncertainty is modelled as a function of the measurand value 𝑡. Two functional forms 
are considered, representing magnitude-dependent uncertainty [13]: 

a) Linear: 

𝑢𝑚(𝑡) ≅ 𝑏0 + 𝑏1𝑡 

b) Nonlinear: 
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𝑢𝑚(𝑡) = √𝑏0
2 + (𝑏1 ⋅ 𝑡)2 

where 𝑏0 is the constant contribution and 𝑏1is the proportionality constant. 

The model is heteroscedastic; it becomes homoscedastic for 𝑏1 = 0. 

These forms accommodate both additive and proportional components of imprecision, consistent 
with analytical performance of laboratory assays. The uncertainty of the constants 𝑏0 and 𝑏1 is 
considered negligible, although in practice they may contribute significantly if derived from limited 
quality control data. 

The functional form 𝑢𝑚(𝑡) was integrated into the parametric class-conditional models of diseased 
(𝐷) and nondiseased (𝐷̅) populations, propagating into the uncertainty of DAMs. 

A.4.2. Sampling uncertainty 
Sampling uncertainty arises from the finite number of individuals in the diseased (𝑛𝐷) and 
nondiseased (𝑛𝐷̅) groups. The uncertainty of estimated means 𝑢(𝜇̂), derived from the central limit 
theorem, and the uncertainty of variances 𝑢2(𝜎̂2), derived from the chi-squared distribution, are 
estimated as follows  [15–17]: 

𝑢(𝜇̂) =
𝑠

√𝑛
 

𝑢2(𝜎̂2) =
2𝜎4

𝑛 − 1
 

A.4.3. Prevalence uncertainty 
Prevalence 𝑣 is modelled as the proportion 

𝑛𝐷

𝑛𝐷̅+𝑛𝐷
  of diseased cases in the total study population. 

Uncertainty is approximated as: 

𝑢𝑠(𝑣) ≅ √
(2 + 𝑛𝐷̅)(2 + 𝑛𝐷)

(4 + 𝑛𝐷̅ + 𝑛𝐷)3
 

 according to the Agresti–Coull adjusted Wald interval, which offers improved coverage at small case 
numbers and extreme probabilities [18]. 

A.4.4. Combined uncertainty 
Combined uncertainty in DAMs is propagated using the first-order Taylor expansion (delta method). 
Assuming uncorrelated parameters 𝛉 = (𝑥1, 𝑥2, … , 𝑥𝑙) with standard uncertainties 𝑢𝑖(𝑡), we have 

𝑢𝑐(𝑡|𝛉) ≈ √∑ (𝜕𝑥𝑖
𝑔(𝑡|𝛉))

2

𝑢𝑖(𝑡)2

𝑙

𝑖=1

 

 

where 𝑢𝑐(𝑡|𝛉) is the combined standard uncertainty of a DAM, denoted as  𝑔(𝑡|𝛉). 

Effective degrees of freedom are estimated using the Welch–Satterthwaite formula: 

𝜈𝑒𝑓𝑓(𝑡|𝛉) ≅
𝑢𝑐(𝑡|𝛉)4

∑
𝑢𝑖(𝑡)4

𝜈𝑖

𝑙
𝑖=1

 

where 𝑢𝑖and 𝜈𝑖denote the uncertainty and degrees of freedom of each contributing component. 

A.4.5 Expanded uncertainty and CIs 
Expanded uncertainty is obtained by multiplying the combined standard uncertainty 𝑢𝑐(𝑡) by a 
coverage factor 𝑘 determined from Student’s 𝑡-distribution with 𝜈eff (𝑡) degrees of freedom.  
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Uncertainty estimates and CIs are truncated at the respective DAM bounds. 

A.5. Details of the illustrative case study 
As previously described, we undertook an illustrative case study to demonstrate the program’s 
application [48]. Fasting plasma glucose (FPG) was used as the diagnostic test measurand for the 
diagnosis of diabetes mellitus (hereafter "diabetes"), with the oral glucose tolerance test (OGTT) as 
the reference method. Diabetes diagnosis was confirmed if the 2-hour plasma glucose value (2-h PG), 
measured two hours after oral administration of 75 g of glucose during an OGTT, was equal to or 
greater than 200 mg/dl [21]. The study focused on individuals aged 65 to 68 years, reflecting the 
significant correlation between age and diabetes prevalence [49].  

Data were obtained from participants in the National Health and Nutrition Examination Survey 
(NHANES) from 2005 to 2016 (n = 60,936). NHANES is a comprehensive survey assessing the health 
and nutritional status of adults and children in the United States [22].  

The inclusion criteria were valid FPG and OGTT results (n = 13,836), no prior diagnosis of diabetes 
[50] (n = 13,465), and age 65–68 years (n = 414). 

Participants with a 2-h PG measurement ≥200 mg/dL were classified as diabetic (n = 52), according 
to American Diabetes Association (ADA) [21].  

The prevalence (prior probability) of diabetes, along with the probability distributions for FPG in 
both diabetic and nondiabetic individuals, were estimated using empirical Bayes methods [23], as 
follows: 

𝑣 ≅
52

414
≅ 0.126 

Lognormal distributions were used to model FPG measurands in diabetic and nondiabetic 
participants using the maximum likelihood estimation method [51]. Parametrized for their means 
𝑚𝐷 and 𝑚𝐷̅ , and standard deviations 𝑠𝐷 and 𝑠𝐷̅ , were defined as: 

𝐿𝐷 = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝐷 , 𝑠𝐷) = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(136.000, 36.673) 

𝐿𝐷̅ = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝐷̅ , 𝑠𝐷̅) = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(102.225,11.144) 

Quality control data for FPG measurements in NHANES over the same period (2005–2016) included 
1,350 QC samples. Nonlinear least squares regression [52, 53] provided the following function for 
standard measurement uncertainty 𝑢𝑚(𝑡) relative to the measurement value 𝑡: 

𝑢𝑚(𝑡) = √𝑏0
2 + 𝑏1

2𝑡2 = √0.6600 + 0.00014𝑡2 

where 𝑏0 = 0.8124 and 𝑏1 = 0.0119. 

The means of the standard measurement uncertainty of FPG of the diabetic and nondiabetic 
participants were estimated as: 

𝑢̂𝐷 ≅ 1.863 mg/dL  

𝑢̂𝐷̅ ≅ 1.469 mg/dL  

 Consequently, the distributions of the measurands, assuming negligible measurement uncertainty, 
were estimated as: 

𝑙𝐷 ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝑚𝐷 , √𝑠𝐷
2 − 𝑢̂𝐷

2 ) ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(136.000, 36.625) 

𝑙𝐷̅ ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝑚𝐷̅, √𝑠𝐷̅
2 − 𝑢̂𝐷̅

2 ) ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(102.642,11.047) 
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 Table A.T.5 presents the descriptive statistics of the FPG datasets and the estimated lognormal 
distributions for diabetic and nondiabetic populations as well as the respective p-values from the 
Cramér–von Mises goodness-of-fit test (FPG and its uncertainty are expressed in mg/dl). 

Table A.T.5. Descriptive statistics of the datasets and the estimated lognormal distributions of the 
diabetic and nondiabetic populations. 

 Diabetic Participants Nondiabetic Participants 

Dataset 𝐿𝐷 𝑙𝐷 Dataset 𝐿𝐷̅ 𝑙𝐷̅ 

n 52 - - 362 - - 

Mean (mg/dL) 136.6 136.0 136.0 102.6 102.2 102.2 

Median (mg/dL) 123.5 131.3 131.3 102.0 101.6 101.6 

Standard Deviation (mg/dL) 44.7 36.7 36.6 10.9 11.1 11.0 

Mean Uncertainty (mg/dL) 1.863 1.863 0 1.469 1.469 0 

Skewness 2.168 0.829 0.827 0.521 0.328 0.325 

Kurtosis 7.762 4.245 4.242 3.435 3.192 3.189 

p-value (Cramér–von Mises test) - 0.156 0.156 - 0.542 0.509 

 

A.6. Software availability and requirements 
Program name: DiagAccU 

Version: 1.0.0 

Project home page: https://www.hcsl.com/Tools/DiagnosticAccuracy/ (accessed on September 26, 
2025) 

Program source: DiagAccU.nb 

Available to download as a ZIP archive at: 
https://www.hcsl.com/Tools/DiagnosticAccuracy/DiagAccU.zip (accessed on September 26, 2025) 

Operating systems: Microsoft Windows 10+, Linux 3.15+, Apple macOS 11+  

Programming language: Wolfram Language 

Other software requirements: To run the program and read the DiagAccUCalculations.nb file, 
Wolfram Player® ver. 14.0+ is required, freely available at https://www.wolfram.com/player/ 
(accessed on September 26, 2025) or Wolfram Mathematica® ver. 14.3. 

System requirements: Intel® i9™ or equivalent CPU and 32 GB of RAM 

License: Attribution—Noncommercial—ShareAlike 4.0 International Creative Commons License 

10. Permanent Citation: 
Chatzimichail RA, Chatzimichail T, Hatjimihail AT. Uncertainty Estimation of Diagnostic Accuracy 
Measures under Parametric Distributions. Hellenic Complex Systems Laboratory. Technical Report 
XXIX. Hellenic Complex Systems Laboratory; 2025. Available at: 
https://www.hcsl.com/TR/hcsltr29/hcsltr29.pdf 

11. License  
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 

https://www.hcsl.com/Tools/DiagnosticAccuracy/
https://www.hcsl.com/Tools/DiagnosticAccuracy/DiagAccU.zip
https://www.wolfram.com/player/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.hcsl.com/TR/hcsltr29/hcsltr29.pdf
https://creativecommons.org/licenses/by-nc-sa/4.0/
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