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Abstract 
Background: In medical diagnostics, estimating post-test or posterior probabilities for disease, positive and 
negative predictive values, and their associated uncertainty is essential for patient care. 

Objective: To introduce a software tool developed in the Wolfram Language for the parametric estimation, 
visualization, and comparison of Bayesian diagnostic measures and their uncertainty. 

Methods: The tool employs Bayes' theorem to estimate positive and negative predictive values and posterior 
probabilities for the presence and absence of a disease. It estimates their standard sampling, measurement, 
and combined uncertainty, as well as their confidence intervals, applying uncertainty propagation methods 
based on first-order Taylor series approximations. It employs normal, lognormal, and gamma distributions. 

Results: The software generates plots and tables of the estimates to support clinical decision-making. An 
illustrative case study using fasting plasma glucose data from the National Health and Nutrition Examination 
Survey (NHANES) demonstrates its application in diagnosing diabetes mellitus. The results highlight the 
significant impact of measurement uncertainty on Bayesian diagnostic measures, particularly on positive 
predictive value and posterior probabilities. 

Conclusion:  The software enhances the estimation and facilitates the comparison of Bayesian diagnostic 
measures, which are critical for medical practice. It provides a framework for their uncertainty quantification 
and assists in understanding and applying Bayes' theorem in medical diagnostics. 

Keywords: Bayesian diagnosis; Bayes’ theorem; prevalence; prior probability; post-test probability; posterior 
probability; likelihood; positive predictive value; negative predictive value; parametric distribution; combined 
uncertainty; measurement uncertainty; sampling uncertainty; probability density function; disease; diabetes 
mellitus 

1. Introduction 

1.1. Medical Diagnosis 
Diagnosis in medicine is fundamentally the process of identifying a disease by analyzing its unique 
characteristics through abduction, deduction, and induction (Stanley and Campos 2013). The term' diagnosis,' 
originating from the Greek 'διάγνωσις' meaning 'discernment' (Weiner, Simpson, and Oxford University Press 
1989 2004), underscores the critical role of distinguishing between healthy and diseased states in individuals. 
Diagnosis can be defined as the stochastic mapping of symptoms, signs, and laboratory and medical imaging 
findings onto a particular disease condition, based on medical knowledge.  

1.1.1. Threshold Based Diagnosis 
Diagnostic tests or procedures are often applied to classify individuals into diseased or nondiseased 
populations in a binary manner. Although the probability distributions of measurands from a quantitative 
diagnostic test in these populations may overlap, results are typically dichotomized by setting a diagnostic 
threshold or cut-off point  (Zou, O’Malley, and Mauri 2007). Reliance on a single threshold for diagnosis across 
a spectrum of data points introduces uncertainty due to this overlap (Chatzimichail and Hatjimihail 2023). 
Nonetheless, this dichotomous approach represents a significant transformation in medical decision-making by 
correlating a continuous spectrum of evidence with binary clinical decisions, such as whether to treat or not 
(Djulbegovic et al. 2015). 

1.1.1.1. Diagnostic Accuracy Measures 
To ensure patient safety, the correctness of this classification must be rigorously evaluated. Although 
numerous diagnostic accuracy measures (DAMs) are described in the literature, only a few are routinely used 
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in clinical research and practice to assess the diagnostic accuracy of threshold-based tests (Šimundić 2009). 
These include the prevalence-dependent positive and negative predictive values, defined conditionally on the 
test outcome.  

1.1.2. Bayesian Diagnosis 
Bayes' theorem  (Gelman et al. 2013; Bayes and Price 1763) plays a pivotal role in medical diagnostics by 
transforming the pre-test or prior probability for a disease into a post-test  or posterior probability after 
considering diagnostic test results (Viana and Ramakrishnan 1992; Gelman et al. 2013; van de Schoot et al. 
2021; Bours 2021; Fischer 2021; Chatzimichail and Hatjimihail 2023). This theorem connects the posterior 
probability P(H|E) of a hypothesis H being true given specific evidence E to the likelihood P(E|H) of observing 
the evidence E given that hypothesis H is true (Joyce 2021). 

1.1.2.1. Bayesian Inference 
In purely Bayesian inference, the process begins with a prior distribution representing initial beliefs about the 
parameters of interest before observing any evidence. This prior distribution is then updated with the 
likelihood function—which represents the probability of the observed evidence given different parameter 
values—using Bayes' theorem to obtain the posterior distribution (van de Schoot et al. 2021). After 
considering the observed data, the posterior distribution combines prior information with new evidence, 
reflecting updated parameter knowledge. 

1.1.2.1.1. Prior Distribution 
The prior distribution embodies the beliefs held by researchers about parameters before seeing the evidence. 
Priors can be informative, weakly informative, or diffuse, depending on the level of certainty or uncertainty 
they reflect. 

1.1.2.1.2. Likelihood Function 
The likelihood function describes the probability of the observed evidence given various parameter values. It 
plays a crucial role in updating the prior distribution to form the posterior distribution. 

1.1.2.1.3. Posterior Distribution 
The posterior distribution results from combining the prior distribution and the likelihood function. It reflects 
the updated understanding of the parameters after incorporating the observed evidence. 

1.1.2.1.4. Workflow 

The typical Bayesian workflow involves: 

a) Specifying the Prior Distribution: Defining initial beliefs about the parameters based on prior 
knowledge or assumptions. 

b) Determining the Likelihood Function: Modeling how likely the observed data are given different 
parameter values. 

c) Computing the Posterior Distribution: Applying Bayes' theorem to update the prior distribution with 
the likelihood function. 

d) Model Checking and Refinement: Assessing the model's fit and making necessary adjustments. 
e) Sensitivity Analysis: Evaluating how sensitive the results are to changes in the prior assumptions or 

model specifications. 

These steps are essential for ensuring the robustness of Bayesian inferences. 

1.1.2.2. Empirical Bayesian Methods 
The empirical Bayesian approach simplifies the purely Bayesian framework by using available data to estimate 
the prior distribution, making it practical when prior information is sparse or unavailable (Casella 1985, 1992). 
Instead of specifying a fixed prior distribution, the empirical Bayesian method treats the prior as an unknown 
quantity to be estimated from the data. This approach is particularly suitable for medical diagnostics, where 
real-time data integration is crucial. 
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1.1.2.2.1. Workflow 

The typical empirical Bayesian workflow involves: 

a) Data Collection and Preliminary Analysis: Gathering a large dataset and performing statistical 
analyses to understand the distributions and characteristics of the data. 

b) Estimating Prior Distributions: Using empirical data to estimate prior distributions and 
probabilities through methods such as maximum likelihood estimation. 

c) Applying Bayes' Theorem: Computing posterior probabilities by combining the estimated 
prior distributions with the likelihood function, thereby incorporating the observed data. 

This method allows for adaptive updating of beliefs based on the data, enhancing the applicability of 
Bayesian methods in practical settings where prior information may be limited. 

1.2. Uncertainty 
Uncertainty reflects imperfect or incomplete information. When quantifiable, it can be expressed using 
probability (Ayyub and Klir 2006). In our empirical Bayesian approach, we integrate frequentist methods for 
uncertainty quantification due to their established reliability and ease of implementation in clinical settings 
(Willink and White 2012). 

1.2.1. Measurement Uncertainty 
Due to the intrinsic variability of measurements, measurement uncertainty is defined as a 'parameter 
associated with the result of a measurement, that characterizes the dispersion of the values that could 
reasonably be attributed to the measurand'. This measurement uncertainty concept supplants the traditional 
notion of total analytical error (Oosterhuis and Theodorsson 2016). 

1.2.2. Sampling Uncertainty 
Diagnostic measures are derived from screening or diagnostic tests applied to population samples. The 
variability within these samples contributes to the overall uncertainty of the measures(M H Ramsey S L R 
Ellison P Rostron 2019). This intrinsic heterogeneity is present even when simple random sampling techniques 
are employed (Ellison and Williams 2012). 

1.2.3. Uncertainty of Diagnostic Accuracy Measures and Bayesian 
Posterior Probabilities 

Previous studies have explored the uncertainty associated with diagnostic accuracy measures and the 
posterior probabilities for disease derived from Bayes' theorem, demonstrating that this uncertainty can 
significantly impact their clinical usefulness  (Chatzimichail and Hatjimihail 2021, 2024). Estimating, evaluating, 
and mitigating this uncertainty are critical tasks in medical diagnosis. 

1.3. Bayesian Diagnostic Measures 
This project introduces a novel software tool designed for the parametric estimation and visualization of four 
diagnostic measures derived from Bayes' theorem, along with their associated uncertainty: 

a) Positive predictive value and negative predictive value (Bours 2021). 

b) Posterior probability for disease and its complement, posterior probability for the absence of disease. 

To the best of our knowledge, this is the first publication that compares these four Bayesian diagnostic 
measures mentioned above and their associated uncertainty. 

2. Methods 

2.1. Calculations 
2.1.1. Calculation of Bayesian Diagnostic Measures 

Bayes' theorem relates the probability 𝑃(𝐻|𝐸) of a hypothesis 𝐻 being true given observed evidence 𝐸 to the 
inverse probability 𝑃(𝐸|𝐻) of observing 𝐸 given that 𝐻 is true. It is expressed as: 

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
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=
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸|𝐻)𝑃(𝐻) + 𝑃(𝐸|𝐻)𝑃(𝐻)
 

where 𝐻 represents the negation of hypothesis 𝐻. Substituting back into Bayes' theorem: 

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸|𝐻)𝑃(𝐻) + 𝑃(𝐸|𝐻)(1 − 𝑃(𝐻))
 

In medical diagnostics, Bayes' theorem provides a robust framework for updating the probability of a disease 
(hypothesis 𝐻) being present given new evidence 𝐸 (such as test results). By combining prior knowledge (pre-
test probability) with new data (test results), Bayesian methods offer a comprehensive approach to the 
medical diagnostic process. 

2.1.1.1. Positive and Negative Predictive Value 
Let 𝐷 denote the presence and �̅� the absence of a disease, 𝐹𝐷(𝑥|𝜽) the cumulative distribution function (CDF) 
of the test measurements 𝑇 in individuals with the disease, 𝐹�̅�(𝑥| 𝜽) the CDF in individuals without the 
disease, and 𝑣 the prevalence or prior probability for disease. The positive predictive value of a diagnostic test 
𝑇 for a diagnostic threshold 𝑡 is calculated as: 

𝑃(𝐷|𝑇 ≥ 𝑡) =
(1 − 𝐹𝐷(𝑡|𝜽))𝑣

(1 − 𝐹𝐷(𝑡|𝜽))𝑣 + (1 − 𝐹�̅�(𝑡|𝜽))(1 − 𝑣)
 

Similarly, the negative predictive value is: 

𝑃(�̅�|𝑇 < 𝑡) =
𝐹�̅�(𝑡|𝜽)(1 − 𝑣)

(1 − 𝐹�̅�(𝑡|𝜽))(1 − 𝑣) + 𝐹𝐷(𝑡|𝜽)𝑣
 

In these equations, 1 − 𝐹𝐷(𝑡|𝜽) represents the sensitivity of the test at threshold 𝑡 and 𝐹�̅�(𝑡|𝜽)  its specificity.  

These measures assess the test's ability to correctly identify diseased and nondiseased individuals based on 
the threshold 𝑡. 

2.1.1.2. Posterior Probability for Disease and Absence of Disease 
Let 𝑓𝐷(𝑥|𝜽) denote the probability density function (PDF) of the test measurements 𝑇 in individuals with the 
disease, 𝑓�̅�(𝑥;  𝜽) the PDF in individuals without the disease, and 𝑣 the prevalence or prior probability for 
disease. The posterior or post-test probability for disease given a  diagnostic test result 𝑇 = 𝑡 is: 

𝑃(𝐷|𝑇 = 𝑡) =
𝑓𝐷(𝑡|𝜽)𝑣

𝑓𝐷(𝑡|𝜽)𝑣 + 𝑓�̅�(𝑡|𝜽)(1 − 𝑣)
 

Similarly, the posterior or post-test probability for the absence of disease is: 

𝑃(�̅�|𝑇 = 𝑡) =
𝑓�̅�(𝑡|𝜽)(1 − 𝑣)

𝑓�̅�(𝑡|𝜽)(1 − 𝑣) + 𝑓𝐷(𝑡|𝜽)𝑣
= 1 − 𝑃(𝐷|𝑇 = 𝑡) 

These posterior probabilities provide a continuous assessment of disease likelihood based on the test 
measurement 𝑡, rather than dichotomizing the results using a threshold. 

2.1.2. Uncertainty Quantification 
Uncertainty in input parameters can be represented as standard uncertainty 𝑢(𝑡), which is the standard 
deviation of 𝑡, and expanded uncertainty 𝑈(𝑡), which defines a range around 𝑡 with a specified probability 
𝑝 (Kallner et al. 2012). 

2.1.2.1. Measurement Uncertainty 
Measurement uncertainty is estimated according to "Guide to the Expression of Uncertainty in 
Measurement" (GUM) (Joint Committee for Guides in Metrology 2011) and "Expression of Measurement 
Uncertainty in Laboratory Medicine" (Kallner et al. 2012). Bias is considered a component of this 
uncertainty (White 2008). The relationship between the standard measurement uncertainty 𝑢𝑚(𝑡) to the 
value of the measurement 𝑡, is typically represented as  (Ellison and Williams 2012): 

𝑢𝑚(𝑡) = √𝑏0
2 + 𝑏1

2𝑡2 

 where 𝑏0 and 𝑏1 are constants. 
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For a linear approximation, it is expressed as (Ellison and Williams 2012): 

𝑢𝑚(𝑡) ≅ 𝑏0 + 𝑏1𝑡 

2.1.2.2. Sampling Uncertainty of Means and Standard Deviations 
Standard uncertainty in means and standard deviations are estimated utilizing the central limit theorem 
and the chi-square distribution (Agresti, Franklin, and Klingenberg 2023; Miller and Miller 2018; J. 
Aitchison 1957) as: 

𝑢𝑠(𝑚𝑃) ≅
𝑠𝑃

√𝑛𝑃

 

𝑢𝑠(𝑠𝑃) ≅
𝑠𝑝

√2(𝑛𝑃 − 1)
 

where 𝑚𝑃 and 𝑠𝑃  are the mean and standard deviation of measurements in a population sample of size 
𝑛𝑃. 

2.1.2.3. Sampling Uncertainty of Prevalence or Prior Probability 
for Disease  

Given the numbers  𝑛𝐷 and 𝑛�̅� of diseased and nondiseased individuals in a population sample, the 

standard uncertainty of the prevalence or prior probability for disease 𝑣 =
𝑛𝐷

𝑛�̅�+𝑛𝐷
  is approximated as: 

𝑢𝑠(𝑣) ≅ √
(2 + 𝑛�̅�)(2 + 𝑛𝐷)

(4 + 𝑛�̅� + 𝑛𝐷)3
 

using the Agresti–Coull adjustment of the Waldo interval (Agresti and Coull 1998). 

2.1.2.4. Measures Combined Uncertainty  
When there are l independent and uncorrelated components of uncertainty, each with standard 
uncertainty 𝑢𝑖(𝑡), then their combined uncertainty 𝑢𝑐𝑙

 (𝑡) is calculated as (Kallner et al. 2012): 

𝑢𝑐𝑙
 (𝑡) = √∑(𝑢𝑖(𝑡))2

𝑙

𝑖=1

 

If the components are correlated, then  (Joint Committee for Guides in Metrology 2011): 

𝑢𝑐𝑙
 (𝑡) = √∑ ∑ 𝑢𝑖(𝑡)𝑢𝑗(𝑡)𝜌𝑖𝑗(𝑡)

𝑙

𝑗=1

𝑙

𝑖=1

 

where 𝜌𝑖𝑗(𝑡) is the correlation coefficient between the uncertainties 𝑢𝑖(𝑡) and 𝑢𝑗(𝑡). 

The standard combined uncertainty of the Bayesian diagnostic measures are computed via uncertainty 
propagation rules, employing a first-order Taylor series approximation (B. M. Wilson and Smith 2013) 
(refer to Supplemental File II: BayesianDiagnosticInsightsCalculations.nb). Assuming uncorrelated 
parameters, we use the following formula to compute uncertainty propagation  (Joint Committee for 
Guides in Metrology 2011): 

𝑢𝑐𝑙
 (𝑡) = √∑ (

𝜕𝑔(𝑡|𝛉)

𝜕𝑥𝑖

)

2

(𝑢𝑖(𝑡) )2

𝑙

𝑖=1

 

where 𝑔(𝑡|𝛉) is a Bayesian diagnostic measure with a parameter vector 𝛉 = (𝑥1, 𝑥2, … , 𝑥𝑙),   𝑢𝑐𝑙
 (𝑡) is the 

standard combined uncertainty of 𝑔(𝑡|𝛉),  and 𝑢𝑖(𝑡) is the standard uncertainty of 𝑥𝑖  at 𝑡. 

The estimated standard uncertainty of the Bayesian diagnostic measures is truncated to the [0,1] range. 
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2.1.2.5. Measures Expanded Uncertainty  
The effective degrees of freedom 𝜈𝑒𝑓𝑓(𝑡) for the combined standard uncertainty 𝑢𝑐𝑙

 (𝑡)  with l components 

𝑢𝑖(𝑡) with 𝜈𝑖  degrees of freedom each are determined using the Welch–Satterthwaite formula 
(Satterthwaite 1946; Welch 1947): 

𝜈𝑙
 

𝑒𝑓𝑓(𝑡) ≅
( 𝑢𝑐𝑙

 (𝑡))4

∑
(𝑢𝑖(𝑡))4

𝜈𝑖

𝑙
𝑖=1

 

where 𝜈𝑖  the respective degrees of freedom. 

It can be shown that if 𝜈𝑚𝑖𝑛  the minimum of 𝜈1, 𝜈2, … , 𝜈𝑙 , then : 

𝜈𝑚𝑖𝑛 ≤ 𝜈𝑙
 

𝑒𝑓𝑓(𝑡) ≤ ∑ 𝜈𝑖

𝑙

𝑖=1

 

The expanded combined uncertainty 𝑈𝑐(𝑡) at a confidence level 𝑝 is estimated as:  

𝑈𝑐(𝑡) ≅ (𝐹𝜈
−1 (

1 − 𝑝

2
) 𝑢𝑐𝑙

 (𝑡), 𝐹𝜈
−1 (

1 + 𝑝

2
) 𝑢𝑐𝑙

 (𝑡)) 

where  𝐹𝜈
−1(𝑧) is the inverse CDF of the Student's t-distribution with 𝜈 degrees of freedom and 𝑢𝑐𝑙

 (𝑡) is 
the standard combined uncertainty of the Bayesian diagnostic measure.  

Consequently, the confidence interval of 𝑡 at the same confidence level 𝑝 is approximated as: 

𝐶𝐼𝑝(𝑡) ≅ (𝑥 +  𝐹𝜈
−1 (

1 − 𝑝

2
) 𝑢𝑐𝑙

 (𝑡), 𝑥 + 𝐹𝜈
−1 (

1 + 𝑝

2
) 𝑢𝑐𝑙

 (𝑡)) 

The estimated confidence intervals of the Bayesian diagnostic measures are truncated to the [0,1] range. 

2.2. The Software 
2.2.1. Program Overview 

The software program Bayesian Diagnostic Insights was developed using the Wolfram Language with 
Wolfram Mathematica® Ver 14.1 (Wolfram Research, Inc., Champaign, IL, USA). It facilitates the estimation 
and comparison of Bayesian diagnostic measures. This interactive program is designed to estimate and plot 
the values, standard sampling uncertainty, measurement uncertainty, combined uncertainty, and confidence 
intervals of Bayesian diagnostic measures for a screening or diagnostic test (refer to Figures 1 and 2). 

The program is freely accessible as a Wolfram Language notebook (.nb) (Supplemental File I: 
BayesianDiagnosticInsights.nb). It can be executed using Wolfram Player® or Wolfram Mathematica® (refer to 
Appendix A.3). The intricate nature of the required computations necessitates substantial computational 
resources. 
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Figure 1. A simplified flowchart of the program Bayesian Diagnostic Insights. 

2.2.2. Input Parameters 

2.2.2.1. Parametric Distributions 
Users can select the distributions of the measurements for diseased and nondiseased populations from a 
predefined list of univariate parametric distributions: 

a) Normal distribution 
b) Lognormal distribution 
c) Gamma distribution. 

2.2.2.2. Bayesian Diagnostic Measures 
Users select the Bayesian diagnostic measures to be evaluated from the following options: 

a) The positive predictive value 𝑃(𝐷|𝑇 ≥ 𝑡) 
b) The negative predictive value 𝑃(�̅�|𝑇 < 𝑡) 
c) The posterior probability for disease 𝑃(𝐷|𝑇 = 𝑡) 
d) The posterior probability for the absence of disease 𝑃(�̅�|𝑇 = 𝑡) 

2.2.2.3. Definition of Populations and Samples Parameters and 
Statistics 

For each population, users define the mean μ and the standard deviation σ of the measurements (in 
arbitrary units), along with the prior probability or prevalence 𝑣 of disease.  

For each population sample, users define its size n, the mean m, and the standard deviation s of the 
measurements (in arbitrary units).  

2.2.2.4. Measurement Uncertainty 
Users select a linear or a nonlinear equation to describe the measurement uncertainty as a function of the 
measurement value 𝑡. They define the constant contribution 𝑏0 to the standard measurement uncertainty, 
the proportionality constant 𝑏1,  and the number of quality control samples analyzed for its estimation. 

For more details about the program's input, please refer to Appendix A2. 
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2.2.3. Output  
The program generates plots and tables detailing the diagnostic measures, including their standard sampling 
uncertainty, measurement uncertainty, combined uncertainty, and associated confidence intervals. By 
providing this extensive array of input parameters, output plots, and tables, the program offers a platform for 
exploring and comparing Bayesian diagnostic measures and their uncertainty using univariate parametric 
distributions of medical diagnostic measurands.  

More detailed documentation of the program's interface is provided in Supplemental file III: 
BayesianDiagnosticInsightsInterface.pdf 

 

Figure 2. A screenshot of the program Bayesian Diagnostic Insights. 

2.3. Illustrative Case Study 
As previously described (Chatzimichail and Hatjimihail 2024), we conducted an illustrative case study to 
demonstrate the program's application. We used fasting plasma glucose (FPG) as the diagnostic test 
measurand for the Bayesian diagnosis of diabetes mellitus (hereafter referred to as "diabetes"), with the oral 
glucose tolerance test (OGTT) serving as the reference method. Diabetes was diagnosed if the plasma glucose 
value was equal to or greater than 200 mg/dL, measured two hours after the oral administration of 75 g of 
glucose during an OGTT (2-hour PG) (American Diabetes Association 2021). The study focused on individuals 
aged 70 to 80 years, reflecting the significant correlation between age and diabetes prevalence (Sun et al. 
2022).  

Data were collected from the National Health and Nutrition Examination Survey (NHANES) participants from 
2005 to 2016 (n = 60,936), as previously described (Chatzimichail and Hatjimihail 2024). NHANES is a 
comprehensive survey assessing the health and nutritional status of adults and children in the United States 
(National Center for Health Statistics 2005-20016).  

The inclusion criteria were valid FPG and OGTT results (n = 13,836), no prior diabetes diagnosis (National 
Center for Health Statistics 2005-20016) (n = 13,465), and age 70–80 years (n = 976). 

Participants with a 2-h PG measurement ≥200 mg/dl were classified as diabetic (n = 154).  

The prevalence or prior probability for diabetes, along with the probability distributions for fasting 
plasma glucose (FPG) in both diabetic and nondiabetic participants, were estimated using empirical 
Bayes' methods (Petrone, Rousseau, and Scricciolo 2014). We estimated the prevalence or prior probability 
for diabetes as follows: 

𝑣 ≅
154

976
= 0.158 
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 The FPG datasets statistics are presented in Table 1 (hereafter, FPG and its uncertainty are expressed in  
mg/dl). 

Table 1. Descriptive statistics of the datasets and the estimated lognormal distributions of the diabetic 
and nondiabetic participants. 

 
Diabetic Participants Nondiabetic Participants 

Dataset 𝐿𝐷 𝑙𝐷 Dataset 𝐿�̅� 𝑙�̅� 

n 154 - - 822 - - 
Mean (mg/dl) 120.7 120.7 120.7 102.6 102.6 102.6 

Median (mg/dl) 117.0 119.4 118.1 102.0 102.1 101.5 
Standard Deviation (mg/dl) 19.1 17.8 17.7 10.9 10.7 10.7 
Mean uncertainty (mg/dl) 1.665 1.665 0 1.473 1.473 0 

Skewness 1.448 0.446 0.448 0.523 0.315 0.314 
Kurtosis 6.354 3.355 3.360 3.445 3.177 3.176 

p-value (Cramér–von Mises test) - 0.294 0.562 - 0.281 0.260 
Lognormal distributions were employed to model FPG measurements in diabetic and nondiabetic participants 
using the maximum likelihood estimation method (Myung 2003). Parametrized for their means 𝑚𝐷 and 𝑚�̅� , 
and standard deviations 𝑠𝐷 and 𝑠�̅�, were defined as: 

𝐿𝐷 = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝐷, 𝑠𝐷) = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(120.671,17.791) 

𝐿�̅� = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑚�̅�, 𝑠�̅�) = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(102.642,10.747) 

Quality control data for  FPG measurements from NHANES for the same period (2005–2016) included 
1350 QC samples. Nonlinear least squares regression (Johnson 2008; Bates and Watts 1988) applied to 
the QC data  provided the following function for standard measurement uncertainty 𝑢𝑚(𝑡) relative to the 
measurement value 𝑡: 

𝑢𝑚(𝑡) = √𝑏0
2 + 𝑏1

2𝑡2 = √0.6600 + 0.00014𝑡2 

where 𝑏0 = 0.8124 and 𝑏1 = 0.0119. 

We estimated the means of the standard measurement uncertainty of FPG in the diabetic and nondiabetic 
participants as follows: 

�̂�𝐷 ≅ 1.665 mg/dl  

�̂��̅� ≅ 1.473 mg/dl  

 Consequently, we estimated the distributions of the measurements, assuming negligible measurement 
uncertainty, as: 

𝑑𝐷 ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝑚𝐷, √𝑠𝐷
2 − �̂�𝐷

2 ) ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(120.671,17.713) 

𝑑�̅� ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝑚�̅�, √𝑠�̅�
2 − �̂��̅�

2 ) ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(102.642,10.747) 

 Table 1 presents the descriptive statistics of the estimated lognormal distributions for diabetic and 
nondiabetic participants and the respective p-values from the Cramér–von Mises goodness-of-fit test (Darling 
1957). This test assesses the goodness-of-fit by comparing the empirical cumulative distribution functions 
(CDFs) of the measurement samples with those of the estimated distributions. The calculated p-values indicate 
that any observed differences between the empirical data and the estimated distributions can be attributed to 
random sampling variability, suggesting that the lognormal distributions provide an acceptable fit to the FPG 
measurements in both groups. 

Figures 3 and 4 show the estimated PDFs of FPG in the diabetic and nondiabetic participants, assuming a 
lognormal distribution and negligible measurement uncertainty, along with the histograms of the respective 
NHANES datasets. 
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Figure 3. The estimated PDF of the FPG (mg/dl) in diabetic participants, assuming a lognormal 
distribution and negligible measurement uncertainty, and the histogram of the respective NHANES 
dataset, with the distribution parameters in Table 2. 

 

Figure 4. The estimated PDF of the FPG (mg/dl) in nondiabetic participants, assuming a lognormal 
distribution and negligible measurement uncertainty, and the histogram of the respective NHANES 
dataset, with the parameters of the distribution in Table 2. 

Likelihoods and posterior probabilities were estimated accordingly. 

3. Results 
The results of applying the program to the illustrative case study data are presented in Figures 5-19, and the 
program settings are detailed in Tables 2 and 3. 
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3.1. Measures  
Table 2. The settings of the program Bayesian Diagnostic Insights for Figures 5-9 

 Units Figures 5-6 Figures 7-8 Figure 9 

𝑡 mg/dl 32.0– 210.0 126 126 

𝜇𝐷 mg/dl 120.7 120.7 120.7 

𝜎𝐷 mg/dl 17.7 17.7 17.7 

𝜇𝐷 mg/dl 102.6 102.6 102.6 

𝜎𝐷 mg/dl 10.7 10.7 10.7 

𝑣  0.158 0.001-0.999 0.158 

𝑑𝐷  lognormal lognormal 
normal 

lognormal 
gamma 

𝑑𝐷  lognormal lognormal 
normal 

lognormal 
gamma 

 

Figure 5 displays the plots of: 

a) Positive predictive value 𝑃(𝐷|𝑇 ≥ 𝑡) of FPG for diabetes versus threshold value 𝑡 (mg/dl) (orange 
curve). The curve is smooth, increasing monotonically, and approximately sigmoidal.  𝑃(𝐷|𝑇 ≥ 𝑡) is 
asymptotically equal to the prevalence of diabetes for lower values of 𝑡, then rises rapidly to approach 
an asymptote at 1.00.  

b) Posterior probability for diabetes versus FPG value 𝑡 (mg/dl)(blue curve). The curve is smooth, 
approximately double sigmoidal. For 𝑡 = 86.8 mg/dl  𝑃(𝐷|𝑇 = 𝑡) has a minimum value of 0.04. 
𝑃(𝐷|𝑇 = 𝑡) is asymptotically equal to 1.00 for very low and very high values of 𝑡, decreasing rapidly to its 
minimum before increasing rapidly again. 

 

 

Figure 5. Positive predictive value and posterior probability for diabetes versus FPG value 𝑡 (mg/dl) curves 
plot, with the program's settings in Table 2. 
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Figure 6 presents the plots of: 

a) The negative predictive value   𝑃(�̅�|𝑇 < 𝑡) of FPG for diabetes versus threshold value 𝑡 (mg/dl) (orange 
curve). The curve is smooth and unimodal, with a maximum value of 0.96 at  𝑡 = 91.3 mg/dl. 𝑃(�̅�|𝑇 < 𝑡) 
is asymptotically equal to 0.00 for lower values of 𝑡, then rises rapidly to its maximum and becomes 
asymptotically equal to 1.00 − 𝑣, where 𝑣 the prevalence of diabetes. 

b) The posterior probability 𝑃(�̅�|𝑇 = 𝑡)  for the absence of diabetes versus FPG value 𝑡 (mg/dl) (orange 
curve). The curve is smooth, unimodal, and approximately double sigmoidal. For an FPG value 𝑡 =
86.8 mg/dl, 𝑃(�̅�|𝑇 = 𝑡) has a maximum value of 0.96. 𝑃(�̅�|𝑇 = 𝑡) is asymptotically equal to 0.00 for 
lower and higher values of 𝑡.  

 

Figure 6. Negative predictive value for diabetes and posterior probability for the absence of diabetes versus 
FPG value 𝑡 (mg/dl) curves plot, with the program's settings in Table 2. 

Additionally: 

a) For 𝑡 = 67.4 mg/dl, we have 𝑃(𝐷|𝑇 ≥ 𝑡) = 𝑃(𝐷|𝑇 = 𝑡) = 0.158 = 𝑣 
b) For  𝑡 < 67.4 mg/dl, we have 𝑃(𝐷|𝑇 ≥ 𝑡) < 𝑃(𝐷|𝑇 = 𝑡),  
c) For  𝑡 > 67.4 mg/dl, we have 𝑃(𝐷|𝑇 ≥ 𝑡) > 𝑃(𝐷|𝑇 = 𝑡).  
d) For 𝑡 = 91.0 mg/dl, we have 𝑃(�̅�|𝑇 < 𝑡) = 𝑃(�̅�|𝑇 = 𝑡) = 0.96. 
e) For  𝑡 < 91.0 mg/dl, we have 𝑃(�̅�|𝑇 < 𝑡) < 𝑃(�̅�|𝑇 = 𝑡) 

f) For  𝑡 > 91.0 mg/dl, we have 𝑃(�̅�|𝑇 < 𝑡) > 𝑃(�̅�|𝑇 = 𝑡).  

As shown in Figures 7 and 8, for an FPG value 𝑡 = 126.0 mg/dl and varying prevalence 0.0 < 𝑣 < 1.0: 

a) Both 𝑃(𝐷|𝑇 ≥ 𝑡) and 𝑃(𝐷|𝑇 = 𝑡)  curves are smooth, starting from a probability asymptotically equal 
to 0.00, monotonically increasing as prevalence increases. 

b) Both 𝑃(�̅�|𝑇 < 𝑡) and 𝑃(�̅�|𝑇 = 𝑡) curves are smooth, starting from a probability asymptotically equal 
to 1.00, monotonically decreasing as prevalence increases. 

c) It is observed that 𝑃(𝐷|𝑇 ≥ 𝑡) > 𝑃(𝐷|𝑇 = 𝑡) and 𝑃(�̅�|𝑇 < 𝑡) > 𝑃(�̅�|𝑇 = 𝑡). 
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Figure 7. Positive predictive value and posterior probability for diabetes versus prior probability or prevalence 
of diabetes𝑣 curves plot for an FPG value 𝑡 = 126 mg/dl, with the other program settings in Table 2. 

 

Figure 8. Negative predictive value for diabetes and posterior probability for the absence of diabetes versus 
prior probability or prevalence of diabetes𝑣 curves plot, for an FPG value 𝑡 = 126 mg/dl, with the other 
settings of the program in Table 2. 

Figure 9 shows a table of the Bayesian diagnostic measures for an FPG value 𝑡 = 126 mg/dl, the established 
threshold for the diagnosis of diabetes (ElSayed et al. 2023), assuming normal, lognormal, and gamma 
distributions of FPG. 
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Figure 9. Table of positive predictive value, posterior probability, and negative predictive value for diabetes, 
and posterior probability for the absence of diabetes, for an FPG value 𝑡 = 126 mg/dl, with the other settings 
of the program in Table 2. 

3.2. Uncertainty 
Table 3. The settings of the program Bayesian Diagnostic Insights for Figures 10-19 

 Units Figures 10-11 Figures 12-13 Figures 14-15 Figures 16-17 Figure 18 Figure 19 

p  - 0.95 - 0.95 - 0.95 

𝑡 mg/dl 32.0– 210.0 32.0– 210.0 126.0 126.0 126.0 126.0 

𝑚𝐷 mg/dl 120.7 120.7 120.7 120.7 120.7 120.7 

𝑠𝐷 mg/dl 17.7 17.7 17.7 17.7 17.7 17.7 

𝑛𝐷  154 154 - - 154 154 

𝑚𝐷 mg/dl 102.6 102.6 102.6 102.6 102.6 102.6 

𝑠𝐷 mg/dl 10.7 10.7 10.7 10.7 10.7 10.7 

𝑛𝐷  822 822 - - 822 822 

𝑛  976 976 976 976 976 976 

𝑣  0.158 0.158 0.001-0.999 0.001-0.999 0.158 0.158 

𝑏0  0.812 0.812 0.812 0.812 0.812 0.812 

𝑏1  0.0119 0.0119 0.0119 0.0119 0.0119 0.0119 

𝑛𝑈   - 1350 - 1350 - 1350 

𝑑𝐷  lognormal lognormal lognormal lognormal lognormal lognormal 

𝑑𝐷  lognormal lognormal lognormal lognormal lognormal lognormal 

Figure 10 shows the plots of: 

a) The standard sampling, measurement, and combined uncertainty of the positive predictive value for 
diabetes versus FPG value 𝑡 (mg/dl). The curves are smooth and unimodal. 

b) The standard sampling, measurement, and combined uncertainty of the posterior probability for diabetes 
versus FPG value 𝑡 (mg/dl). The curves are smooth and bimodal. 

Figure 11 shows the plots of: 

a) The standard sampling, measurement, and combined uncertainty of the negative predictive value for 
diabetes versus FPG value 𝑡 (mg/dl). The curves are smooth and unimodal. 
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b) The standard sampling, measurement, and combined uncertainty of the posterior probability for the 
absence of diabetes versus FPG value 𝑡 (mg/dl). The curves are smooth and bimodal. 

In the assessment of the combined standard uncertainty of posterior probability for diabetes 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] 
and for the absence of diabetes 𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)]: 

a) They are equal. 
b) They are substantially affected by the measurement uncertainty of FPG. 
c) Two local maxima are observed, corresponding to the regions near the steepest segments of the posterior 

probability curves, which exhibit an approximately double sigmoidal configuration. The maxima are 
quantitatively approximated as follows: 

a. At an FPG value of 𝑡 = 58.5 mg/dl, the combined standard uncertainty is 0.898, for 
𝑃(𝐷|𝑇 = 𝑡) = 0.581and  𝑃(�̅�|𝑇 = 𝑡) = 0.419. 

b. At an FPG value of 𝑡 = 133.1 mg/dl, the combined standard uncertainty is 0.190, where 
𝑃(𝐷|𝑇 = 𝑡) = 0.726 and 𝑃(�̅�|𝑇 = 𝑡) = 0.274. 

c. The standard combined uncertainty  𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)]  of the positive predictive value for diabetes 
of FPG has a maximum value of 0.150 for 𝑡 = 126.0 mg/dl, where 𝑃(𝐷|𝑇 ≥ 𝑡) = 0.758. 

d.  The standard combined uncertainty 𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)]  of the negative predictive value for 
diabetes has a maximum value of 0.900 for 𝑡 = 58.5 mg/dl, where  𝑃(�̅�|𝑇 < 𝑡) = 0.321.  

e. This pattern indicates heightened uncertainty in the regions where the diagnostic measures 
curves have their most pronounced inflections (Figures 5 and 6). 

In addition: 

a) For 𝑡 = 95.7mg/dl, we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] = 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] = 0.013, while 𝑃(𝐷|𝑇 ≥ 𝑡) = 0.193 and 
𝑃(𝐷|𝑇 = 𝑡) = 0.049.  

b) For 𝑡 = 126.7 mg/dl, we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] = 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] = 0.149, while 𝑃(𝐷|𝑇 ≥ 𝑡) = 0.774 
and 𝑃(𝐷|𝑇 = 𝑡) = 0.517. 

c) For 0 < 𝑡 < 95.7 mg/dl and  𝑡 > 126.7 we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] < 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)].  
d) For 95.7 mg/dl < 𝑡 < 1267 mg/dl we have 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] < 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] 
e) For 𝑡 = 59.1 mg/dl, we have 𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)] = 𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)] = 0.887, while 𝑃(�̅�|𝑇 < 𝑡) = 0.362 

and 𝑃(�̅�|𝑇 = 𝑡) = 0.463.  
f) For 𝑡 = 103.8 mg/dl, we have 𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)] = 𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)] = 0.015, while 𝑃(�̅�|𝑇 < 𝑡) = 0.947 

and 𝑃(�̅�|𝑇 = 𝑡) = 0.921. 
g) For 0 < 𝑡 < 59.1 mg/dl and  103.8 < 𝑡 we have 𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)] < 𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)].  

h) For 59.1 mg/dl < 𝑡 < 103.8 mg/dl we have 𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)] < 𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)]. 

The confidence intervals are affected accordingly (refer to Figures 12 and 13): 

a) The confidence intervals of positive predictive value 𝑃(𝐷|𝑇 = 𝑡) (blue curves) are narrower for both 
lower and higher values of 𝑡. 

b) The confidence intervals of Bayesian posterior probability 𝑃(𝐷|𝑇 ≥ 𝑡) (orange curves) narrow 
considerably for lower values of 𝑡. 

c) The confidence intervals of Bayesian posterior probability 𝑃(�̅�|𝑇 = 𝑡) (blue curves) are wider at the 
extremes of the 𝑡 spectrum. 

d) The confidence intervals of negative predictive value 𝑃(�̅�|𝑇 < 𝑡) (orange curves) are wide at lower 𝑡 
values, to become considerably narrower at higher values. 
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Figure 10. Standard sampling, measurement, and combined uncertainty of the positive predictive value and 
posterior probability for diabetes versus FPG value 𝑡 (mg/dl) curves plot, with the program's settings in Table 
3. 

 

Figure 11. Standard sampling, measurement, and combined uncertainty of the negative predictive value for 
diabetes and posterior probability for the absence of diabetes versus FPG value 𝑡 (mg/dl) curves plot, with the 
program's settings in Table 3. 
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Figure 12. Confidence intervals of the positive predictive value and posterior probability for diabetes versus 
FPG value 𝑡 (mg/dl) curves plot, with the program's settings in Table 3. 

 

Figure 13. Confidence intervals of the negative predictive value and posterior probability for the absence of 
diabetes versus FPG value 𝑡 (mg/dl) curves plot, with the program's settings in Table 3. 

For an FPG value 𝑡 = 126 mg/dl, Figures 14 and 15 show the plots of the standard sampling, measurement, 
and combined uncertainty of positive predictive value, the posterior probability for diabetes, the negative 
predictive value, and the posterior probability for the absence of diabetes versus prior probability or 
prevalence of diabetes 𝑣. The combined uncertainty of the diagnostic measures is substantially affected by the 
measurement uncertainty of FPG. The curves are unimodal, with maxima approximately: 

a) For 𝑣 = 0.055,  𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] = 0.205 where 𝑃(𝐷|𝑇 ≥ 𝑡) = 0.493. 
b) For 𝑣 = 0.158,  𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] = 0.141 where 𝑃(𝐷|𝑇 = 𝑡) = 0.494. 
c) For 𝑣 = 0.631,  𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)] = 0.023 where 𝑃(�̅�|𝑇 < 𝑡) = 0.471. 
d) For 𝑣 = 0.158,  𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)] = 0.141 where 𝑃(�̅�|𝑇 = 𝑡) = 0.506. 
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The local maxima indicate heightened uncertainty in regions where the diagnostic measures curves have their 
most pronounced inflections (refer to Figures 7 and 8). 

Additionally: 

a) For 𝑣 = 0.173 we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] = 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] = 0.141, 𝑃(𝐷|𝑇 ≥ 𝑡) = 0.777 and 
𝑃(𝐷|𝑇 = 𝑡) = 0.521.  

b) For 0 < 𝑣 < 0.175 we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] > 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)]. 
c) For 0.175 < 𝑣 < 1.0 we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] < 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)].  
d) For 0 < 𝑣 < 1.0 we have 𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)] < 𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)].  

Notably, the combined uncertainty of the negative predictive value is considerably less than the combined 
uncertainty of the posterior probability for the absence of diabetes.  

The confidence intervals are adjusted accordingly (refer to Figures 16-17): 

a) The confidence intervals of Bayesian posterior probability 𝑃(𝐷|𝑇 = 𝑡) for diabetes (Figure 16, blue 
curves), positive predictive value 𝑃(𝐷|𝑇 ≥ 𝑡) (Figure 16, blue curves), Bayesian posterior probability 
𝑃(�̅�|𝑇 = 𝑡) for the absence of diabetes  (Figure 17, blue curves) and negative predictive value 
𝑃(�̅�|𝑇 < 𝑡) (Figure 17, orange curves)  are narrowest at both lower and higher prevalences. 

b) The confidence intervals of 𝑃(𝐷|𝑇 ≥ 𝑡) (Figure 16, orange curves) are generally narrower than those 
of 𝑃(𝐷|𝑇 = 𝑡) (Figure 16, blue curves). 

c) The confidence intervals of 𝑃(�̅�|𝑇 < 𝑡)(Figure 17, orange curves) are considerably narrower than 
those of 𝑃(�̅�|𝑇 = 𝑡) (Figure 17, blue curves). 

 
Figure 14. Standard sampling, measurement, and combined uncertainty of the positive predictive value 
and posterior probability for diabetes versus prior probability or prevalence of diabetes 𝑣 curves plot, for 
an FPG value 𝑡 = 126 mg/dl, with the other settings of the program in Table 3. 
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Figure 15. Standard sampling, measurement, and combined uncertainty of the negative predictive value for 
diabetes, and posterior probability for the absence of diabetes versus prior probability or prevalence of 
diabetes 𝑣 curves plot, for an FPG value 𝑡 = 126 mg/dl, with the other settings of the program in Table 3. 

 

Figure 16. Confidence intervals of the positive predictive value and posterior probability for diabetes versus 
prior probability or prevalence of diabetes 𝑣 curves plot, for an FPG value 𝑡 = 126 mg/dl, with the other 
settings of the program in Table 3. 
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Figure 17. Confidence intervals of the negative predictive value for diabetes and posterior probability for the 
absence of diabetes versus prior probability or prevalence of diabetes 𝑣 curves plot for an FPG value 𝑡 =
126 mg/dl, with the other settings of the program in Table 3. 

 

Figure 18. Table of the sampling, measurement, and combined uncertainty of the Bayesian diagnostic 
measures for an FPG value 𝑡 = 126 mg/dl, with the other program settings in Table 3. 

 

Figure 19. Table of the confidence intervals of the Bayesian diagnostic measures for an FPG value 𝑡 =
126 mg/dl, with the other settings of the program in Table 3. 
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Figures 18 and 19 present tables of Bayesian diagnostic measures for FPG measurements at the diabetes 
diagnostic threshold 𝑡 = 126 mg/dl, following the American Diabetes Association (ADA) guidelines. The 
standard for diagnosing diabetes used in this study is the oral glucose tolerance test (OGTT) with a 200 mg/dl 
threshold. The limited concordance between these two diagnostic thresholds is evident from the point 
estimations and their associated uncertainty. For an FPG  diagnostic threshold 𝑡 = 126 mg/dl: 

a) 𝑃(𝐷|𝑇 ≥ 𝑡) = 0.758, with a confidence interval of (0.465 - 1.000). 
b) 𝑃(𝐷|𝑇 = 𝑡) = 0.494, with a confidence interval of (0.217 - 0.770). 
c) 𝑃(�̅�|𝑇 < 𝑡) = 0.890, with a confidence interval of (0.868 - 0.912). 

d) 𝑃(�̅�|𝑇 = 𝑡) = 0.506, with a confidence interval of (0.230 - 0.783). 

Therefore: 

a) 𝑃(𝐷|𝑇 = 𝑡) < 𝑃(𝐷|𝑇 ≥ 𝑡) 
b) The sizes of the confidence intervals of 𝑃(𝐷|𝑇 ≥ 𝑡) and 𝑃(𝐷|𝑇 = 𝑡) are comparable. 
c) There is a considerable overlap between the confidence intervals of 𝑃(𝐷|𝑇 ≥ 𝑡) and 𝑃(𝐷|𝑇 = 𝑡). 
d) 𝑃(�̅�|𝑇 = 𝑡) < 𝑃(�̅�|𝑇 < 𝑡)  
e) The size of the confidence interval of 𝑃(�̅�|𝑇 < 𝑡) is considerably less than the size of the confidence 

interval of 𝑃(�̅�|𝑇 = 𝑡). 
f) There is no overlap between the confidence intervals of 𝑃(�̅�|𝑇 < 𝑡) and 𝑃(�̅�|𝑇 = 𝑡). 

In addition, the table with the standard uncertainty of the Bayesian diagnostic measures of Figure 18 shows 
that for 𝑡 = 126 mg/dl, measurement uncertainty is the main component of their combined uncertainty. 

All the figures provided by the program about the illustrative case study data are presented in Supplemental 
file IV: BayesianDiagnosticInsightsFigures.pdf. 

4. Discussion 
There is a persistent need to estimate diagnostic measures and their uncertainty, especially concerning 
screening and diagnostic tests for potentially life-threatening diseases. The COVID-19 pandemic has 
highlighted this necessity (Lippi, Simundic, and Plebani 2020; Martin H. Kroll, MD Bipasa Biswas Jeffrey R. 
Budd, PhD Paul Durham, MA Robert T. Gorman, PhD Thomas E. Gwise, PhD Abdel-Baset Halim, PharmD, 
PhD, DABCC Aristides T. Hatjimihail, MD, PhD Jørgen Hilden, MD Kyunghee Song 2011; Tang et al. 2020; 
Deeks et al. 2020; Infantino et al. 2020; Mahase 2020).   

Traditional diagnostic approaches often rely on fixed thresholds, which may overlook certain aspects of 
disease pathology. While historically influential, these methods may lack the comprehensive perspective 
required in modern patient-centered medicine. The continuous evolution of disease progression and changing 
patient demographics further complicate the diagnostic process, challenging the limits of traditional methods. 
In this context, Bayesian inference emerges as a viable alternative, offering probabilistic assessments tailored 
to individual patient profiles(Choi, Johnson, and Thurmond 2006; Chatzimichail and Hatjimihail 2023). 
Bayes' theorem provides a statistical framework to update the probability estimate of a disease as new 
information or test results become available, enabling healthcare professionals to refine disease probability 
estimates based on new data and prior knowledge. 

We developed the software tool introduced in this study to facilitate the application of Bayes' theorem in 
medical diagnosis. It allows for the exploration and comparison of two pairs of Bayesian diagnostic measures 
for screening or diagnostic tests, assuming parametric distributions of the measurements: 

a) The positive predictive value and the posterior probability for disease and  
b) The negative predictive value and the posterior probability for the absence of disease. 

Academic publications that thoroughly explore the statistical distributions of diagnostic test measurements in 
diseased and nondiseased populations are limited (Smith and Gelfand 1992). Therefore, exploratory data 
analysis and fitting of statistical distributions to diagnostic measurement data may be necessary to apply the 
software tool effectively (Forbes et al. 2011). Our previously developed Bayesian Inference program may be 
helpful in this regard (Chatzimichail and Hatjimihail 2023).  

Our choice of parametric distributions was motivated by their broad applicability in modeling medical 
diagnostic measurements: 

a) Normal distribution  
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A normal distribution is suited for data symmetric around the mean, indicating minimal skewness. 
This distribution assumes that data points are equally likely to occur on either side of the mean, 
forming the well-known bell curve.  

b) Lognormal distribution  
A lognormal distribution is appropriate for modeling positively skewed data, where the logarithm of 
the variable follows a normal distribution. Defined by a location parameter and a scale parameter of 
the underlying normal distribution, it can model data that cannot assume negative values and exhibit 
a long right tail, such as many biological measurements.  

c) Gamma distribution  
The gamma distribution is suitable for data with varying skewness and kurtosis that a lognormal 
distribution cannot adequately model. It is characterized by a shape parameter and a scale 
parameter. The flexibility of these parameters allows the gamma distribution to model a wide range 
of data behaviors, including varying degrees of skewness and kurtosis. 

In our illustrative case study, we implemented an empirical Bayesian approach due to several advantages: 

a) Adaptability  
It can adapt to the specific characteristics of the dataset, making it more flexible and applicable to 
diverse clinical settings. 

b) Robustness 

Using empirical data to inform the prior mitigates the risk of bias introduced by subjective prior 
choices. 

c) Computational efficiency 
Estimating the prior from data reduces the computational burden compared to fully Bayesian 
methods that require specifying and integrating complex prior distributions. 

Estimating the uncertainty inherent in diagnostic measures is a considerable challenge in medical diagnostics 
(Srinivasan, Westover, and Bianchi 2012; Chatzimichail and Hatjimihail 2021, 2024). This challenge is 
particularly pronounced in medical decision-making for potentially life-threatening conditions. Assessing 
uncertainty is vital for ensuring reliable diagnoses and appropriate clinical interventions. Several notable 
examples of diagnostic measures where uncertainty estimation is critical include: 

a) Cardiac troponin for diagnosing myocardial injury and infarction 
Cardiac troponin is a crucial biomarker for diagnosing myocardial injury and infarction (Wereski et al. 
2021).  

b) Natriuretic peptides for diagnosing heart failure 
Natriuretic peptides, such as B-type natriuretic peptide (BNP) and N-terminal pro-b-type natriuretic 
peptide (NT-proBNP), are essential in diagnosing heart failure (Roberts et al. 2015). 

c) D-dimer for diagnosing thromboembolic events 
The measurement of D-dimer levels plays a crucial role in diagnosing thromboembolic events, such as 
deep vein thrombosis and pulmonary embolism (Freund et al. 2021). 

d) Fasting plasma glucose (FPG), oral glucose tolerance test (OGTT), and glycated hemoglobin (HbA1c) 
for diagnosing diabetes 
Diagnosing diabetes relies on measuring blood glucose levels through tests like FPG, OGTT, and HbA1c 
(ElSayed et al. 2023). 

e) OGTT for diagnosing gestational diabetes 
The oral glucose tolerance test (OGTT) is the standard diagnostic tool for gestational diabetes and is 
vital for the health of both the mother and the developing fetus (Rani and Begum 2016). 

f) Thyroid stimulating hormone (TSH), free serum triiodothyronine (T3), and free serum thyroxine (T4) for 
diagnosing thyroid dysfunction 
Measurement of thyroid function tests, including TSH, free T3, and free T4, is essential for diagnosing 
thyroid dysfunctions (Reyes Domingo, Avey, and Doull 2019). 

Our software allows the estimation and plotting of the sampling, measurement, and combined 
uncertainty of Bayesian diagnostic measures and their confidence intervals.  

Confidence interval plots serve multiple purposes: 

a) Precision assessment  
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They provide insights into the precision of probability estimates at different measurement levels 
(Greenland et al. 2016).  

b) Decision-making support  

For clinical decision-making, these plots can highlight the measurement thresholds where the 
probability for disease shifts significantly, guiding interventions or further testing.  

c) Epidemiological insights 
In epidemiological studies, understanding how disease probability varies across a population's 
measurement spectrum helps identify risk factors and inform public health strategies. 

Diagnostic uncertainty quantification is imperative in quality and risk management in laboratory medicine and 
may contribute to the design and implementation of test accuracy studies (Horvath et al. 2024). Despite 
extensive research on Bayesian diagnosis and uncertainty as separate areas, their intersection remains 
relatively unexplored (Baron 1994; Ashby and Smith 2000). 

The illustrative case study, focusing on individuals aged 70 to 80 years, aimed to minimize age-related 
variations in disease prevalence. This focus demonstrates the considerations required in modern diagnostics, 
where factors such as age, genetics, and lifestyle choices must be accounted for in the diagnostic equation. 
The case study underscores the substantial impact of combined uncertainty on the diagnostic process, 
highlighting the predominant role of measurement uncertainty and the challenges in enhancing diagnostic 
accuracy. Improving the analytical methods of screening and diagnostic tests could enable the medical 
community to achieve more accurate diagnoses, facilitating more effective and personalized patient care.  

A detailed analysis of Figures 5-8, 12,13, 16, and 17 from the illustrative case study reveals several clinical 
implications: 

a) Influence of Threshold and Prevalence on Positive Predictive Value: The positive predictive value 
𝑃(𝐷|𝑇 ≥ 𝑡)  is highly influenced by the chosen threshold and the prevalence of diabetes, emphasizing the 
importance of selecting the appropriate cut-off for accurate diagnosis. 

b) Double-Threshold Pattern in Posterior Probability: The double-threshold pattern observed in the Bayesian 
posterior probability 𝑃(𝐷|𝑇 = 𝑡)  for diabetes suggests the need to understand the pathological 
implications of different FPG levels for tailored diagnostic strategies. 

c) Variability in Confidence Intervals at Intermediate FPG Levels: The variability in confidence intervals of 
both 𝑃(𝐷|𝑇 ≥ 𝑡)  and 𝑃(𝐷|𝑇 = 𝑡)  at intermediate FPG levels suggests an increased risk of false positives 
or false negatives. This variability could result in unnecessary treatments or missed diagnoses, highlighting 
the importance of carefully interpreting test results within this range.  

d) Significance of Threshold Selection for Negative Predictive Value: The differing trends in negative 
predictive value 𝑃(�̅�|𝑇 < 𝑡)  highlight the significance of selecting the appropriate threshold for excluding 
diabetes. 

e) Unique Behavior of Posterior Probability for Absence of Disease: The unique behavior of Bayesian 
posterior probability 𝑃(�̅�|𝑇 = 𝑡) for the absence of diabetes at lower FPG values, and the variability in 
its confidence intervals at both lower and higher FPG values impact diagnostic decisions, necessitating 
careful interpretation. 

f) Robustness of Negative Predictive Values: Despite the interpretative challenges of 𝑃(�̅�|𝑇 < 𝑡) at lower 
FPG values, it is generally more robust than 𝑃(�̅�|𝑇 = 𝑡)  at higher FPG values. 

The tables in Figures 18 and 19: 

a) Indicate limited concordance between the diabetes classification criteria derived from the OGTT and 
FPG tests, consistent with findings previously reported in the literature (Tucker 2020; Sacks et al. 
2023).  

b) Show that for FPG and diabetes, the point estimation of each Bayesian posterior probability is 
substantially less than the respective predictive value.  

The discrepancies between FPG and OGTT thresholds for diagnosing diabetes highlight the need for a careful 
and comprehensive approach in clinical practice. By implementing combined testing strategies, repeat testing 
protocols, and informed clinical judgment, healthcare providers can improve diagnostic accuracy and patient 
outcomes. Further research and patient education are also necessary in addressing the challenges posed by 
the limited concordance between these diagnostic methods and their considerable uncertainty. 
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Our approach integrates frequentist methods for uncertainty quantification due to their established reliability 
and ease of implementation in clinical settings. This empirical Bayesian framework allows for the practical 
application of Bayes' theorem while leveraging the robustness of frequentist techniques for estimating 
sampling and measurement uncertainty. 

Future research should focus on improving the estimations of the uncertainty of Bayesian diagnostic 
measures of different measurands under a diverse array of clinically and laboratory-relevant parameter 
settings. Furthermore, the full implementation of Bayesian methods for all aspects of uncertainty 
quantification could be explored, including utilizing Bayesian hierarchical models (Gelman et al. 2013; Congdon 
2021). Additionally, applying Bayes' factors to compare the evidence provided by different diagnostic 
measures represents a promising area for further investigation (Kass and Raftery 1995; Bozza, Taroni, and 
Biedermann 2022). These advancements could enhance the robustness and applicability of Bayesian methods 
in medical diagnostics, overcoming their current limitations (Willink and White 2012; Willink 2013). 

To transition from research to practical application, clinical decision analysis, cost-effectiveness studies, and 
research on risk assessment and quality of care, including implementing studies, are required (J. Andre 
Knottnerus and Buntinx 2011). These efforts are essential for addressing the complex issues in diagnostic 
medicine and developing new and effective strategies to overcome ongoing challenges. 

All major general or medical statistical software packages (JASP® ver. 0.19.1, Mathematica® ver. 14.1, 
Matlab® ver. R2024a, MedCalc® ver. 23.0.2, metRology ver. 1.1-3, NCSS® ver. 24.0.3, NIST Uncertainty Machine 
ver. 1.6.2, OpenBUGS ver. 3.2.3, R ver. 4.4.1, SAS Viya® ver. 2024.09, SPSS® ver. 30.0.0, Stan ver. 2.35, Stata® 
ver. 19, and UQLab ver. 2.0) include routines for calculating and plotting various diagnostic measures and 
their confidence intervals. However, the program presented in this work provides 34 types of plots and 
16 types of comprehensive tables of the four Bayesian diagnostic measures, their uncertainty, and the 
associated confidence intervals (Figure 1), many of which are novel. To the best of our knowledge, neither 
the programs mentioned above, nor any other software offers this extensive range of plots and tables without 
requiring advanced statistical programming. 

The program complements our previously published tools for exploring diagnostic measures and 
posterior probability for disease and their uncertainty (Chatzimichail and Hatjimihail 2018, 2021, 2023, 
2024), facilitating their comparison. 

4.1. Limitations of the Program 
This program's limitations, which provide paths for further research, include: 

a) Underlying assumptions  
a. Existence of "Gold Standards" in Diagnostics: The program assumes the availability of a "gold 

standard" for disease classification. Without a "gold standard", alternative approaches like latent class 
models or expert consensus methods may be necessary (J. A. Knottnerus and Dinant 1997; Pfeiffer 
and Castle 2005; Nair, Aggarwal, and Khanna 2011; van Smeden et al. 2014). 

b. Assumption of Specific Distributions: The tool assumes that the measurements or their 
transformations follow normal, lognormal, or gamma distributions. While these distributions are 
often used in biomedical data, they may not accurately represent the underlying data characteristics. 
Literature on reference intervals, diagnostic thresholds, and clinical decision limits provides 
alternative distribution models that could be considered (Solberg 1987; Pavlov, Wilson, and Delgado 
2012; Sikaris 2012; Daly et al. 2013; Ozarda et al. 2018).  

c. Assumption of Bimodality: The program generally accepts that the measurements are bimodally 
distributed, corresponding to diseased and nondiseased populations. However, in some cases, an 
unimodal distribution might be more appropriate (J. M. G. Wilson and Jungner 1968; Petersen and 
Horder 1992). 

b) Approximations used for the estimations 
a. Uncertainty Approximation in Disease Prevalence: The uncertainty associated with a disease's 

prevalence is approximated using the Agresti–Coull-adjusted Wald interval. Although this method is 
widely used, more accurate techniques are available, especially for small sample sizes or extreme 
probabilities (Pires and Amado 2008). 

b. Sampling Uncertainty Approximations: The program approximations of the sampling uncertainty for 
sample means and standard deviations may be less reliable for small sample sizes or when the data 
exhibit significant skewness, as is often the case with lognormal and gamma distributions (Schmoyeri 
et al. 1996; Bhaumik, Kapur, and Gibbons 2009). 
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c. First-Order Taylor Series Approximations: The program employs first-order Taylor series 
approximations for uncertainty propagation. While this method simplifies calculations, it may not 
capture the complexity of uncertainty in nonlinear functions. Higher-order approximations or Monte 
Carlo simulations could provide more accurate results (Joint Committee for Guides in Metrology 2008, 
2011). 

d. Confidence Intervals Based on the t-Distribution: Confidence intervals are derived using the t-
distribution, which, despite the high relative uncertainty (Williams 2020), is a practical choice in 
selected scenarios, particularly in metrology (Willink and White 2012; Willink 2013; Gelman et al. 
2013; Stephens 2023). Alternatives like credible intervals in a Bayesian framework could provide more 
accurate uncertainty quantification of nonlinear functions, especially for small samples. 

e. Truncation to the [0,1] Range: Truncation of the estimated standard uncertainty and the confidence 
intervals to the [0,1] range is implemented since probabilities cannot logically assume values less than 
zero or greater than one. However, this approach may distort the uncertainty representation. 
Quantile-derived credible intervals inherently avoid truncation by constructing intervals within the 
[0,1] range. 

While addressing these limitations would considerably increase computational complexity, they represent 
critical areas for future enhancement (Joint Committee for Guides in Metrology 2008, 2020). We should, 
however, keep in mind that "all models will be based on assumptions and can only approach complex reality" 
(Oosterhuis 2017), as "all models are wrong,  but some models are useful" (Box 1979). 

4.2. Limitations of the Case Study  
The primary limitations of the case study are: 

a) Dependence on the OGTT as the reference method for diagnosing diabetes mellitus, despite various 
factors affecting glucose tolerance (Rao, Disraeli, and McGregor 2004; Meneilly and Elliott 1999; 
Geer and Shen 2009; Van Cauter, Polonsky, and Scheen 1997; Colberg et al. 2010; Salmerón et al. 
1997; Surwit et al. 2002; Pandit et al. 1993; Dupuis et al. 2010).  

b) Approximation of the FPG measurements distributions from NHANES datasets by lognormal 
distributions.  

c) The implied assumption of simple random sampling. 

5. Conclusion 
Bayesian Diagnostic Insights provides modules for estimating, visualizing, and comparing Bayesian diagnostic 
measures, including their associated uncertainty. Exploring the uncertainty of disease probability estimates 
can assist in the clinical decision-making process. The illustrative case study using fasting plasma glucose (FPG) 
for diabetes diagnosis demonstrates the impact of measurement uncertainty on diagnostic measures, 
highlighting its relevance in clinical and laboratory practices. While the software offers a framework for 
applying Bayes' theorem in medical diagnostics, further research is needed to fully assess its utility in 
diagnosing various health conditions. 

6. Supplemental Material 
 The following supplemental files are available at https://www.hcsl.com/Supplements/SBDI.zip (accessed on 
November 7, 2024): 

a) Supplemental File I:  
BayesianDiagnosticInsights.nb: The program as a Wolfram Notebook.  

b) Supplemental File II:  
BayesianDiagnosticInsightsCalculations.nb: The calculations for estimating Bayesian diagnostic measures 
and their standard uncertainty in a Wolfram Notebook 

c) Supplemental File III:  
BayesianDiagnosticInsightsInterface.pdf: A brief interface documentation of the program.  

d) Supplemental File IV:  
BayesianDiagnosticInsightsFigures.pdf: The figures of the program's output for the illustrative case study.  

https://www.hcsl.com/Supplements/SBDI.zip
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8. Appendix A 

A.1. Notation 
A.1.1. Acronyms 

CDF: cumulative distribution function 

PDF: probability density function 

FPG: fasting plasma glucose 

ADA: American Diabetes Association 

A.1.2. Abbreviations 
𝐷: disease 

�̅�: absence of disease 

 𝑇: diagnostic test result 

A.1.3. Parameters 
𝑡: diagnostic threshold 

𝜇𝐷: mean of the measurements of the diseased population 

𝜎𝐷: standard deviation of the measurements of the diseased population 

𝑑𝐷: distribution of the measurements of the diseased population 

𝜇�̅� : mean of the measurements of the nondiseased population 

𝜎�̅�   : standard deviation of the measurements of the nondiseased population 

𝑑�̅�: distribution of the measurements of the nondiseased population 

𝑛𝐷 : size of the diseased population sample 

𝑚𝐷: mean of the measurements of the diseased population sample 

𝑠𝐷: standard deviation of the measurements of the diseased population sample 

𝑛�̅�: size of the nondiseased population sample 

𝑚�̅� : mean of the measurements of the nondiseased population sample 

𝑠�̅�   : standard deviation of the measurements of the nondiseased population sample 

𝑣   : prior probability for disease or prevalence rate 

𝑛𝑈 : number of quality control measurements 

𝑏0 : constant contribution to measurement uncertainty 

𝑏1: measurement uncertainty proportionality constant 

https://wwwn.cdc.gov/nchs/nhanes/default.aspx
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p : confidence level 

𝜽: Parameter vector  

A.1.4. Bayesian Diagnostic Measures 
𝑃(𝐷|𝑇 ≥ 𝑡): positive predictive value 

𝑃(�̅�|𝑇 < 𝑡): negative predictive value 

𝑃(𝐷|𝑇 = 𝑡): posterior probability for disease 

𝑃(�̅�|𝑇 = 𝑡): posterior probability for the absence of disease 

A.1.5. Functions 
𝑓(𝑥): probability density function 

𝐹(𝑥): cumulative distribution function 

𝑢𝑚(𝑥): standard measurement uncertainty 

𝑢𝑠(𝑥): standard sampling uncertainty 

𝑢𝑙
 

𝑐(𝑥): standard combined uncertainty 

𝜈𝑙
 

𝑒𝑓𝑓(𝑥): effective degrees of freedom 

𝑖𝑛𝑓(𝑓): lower bound of 𝑓 

𝑠𝑢𝑝(𝑓): upper bound of 𝑓 

A.2. Input 
A.2.1. Range of input parameters 

𝑡: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(0, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑚�̅� − 5𝑠�̅� , 𝑚𝐷 − 5𝑠�̅�)) − 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑚�̅� + 5𝑠�̅� , 𝑚𝐷 + 5𝑠�̅�) 

𝑛𝐷 : 2 – 10,000 

𝑚𝐷: 0.1 – 10,000 

𝑠𝐷: 0.01 – 1,000 

𝑛�̅�: 2 – 10,000 

𝑚�̅� : 0.1 – 10,000 

𝑠�̅�   : 0.01 – 1,000 

𝑣  : 0.001 – 0.999 

𝑛𝑈 : 20 – 10,000 

𝑏0 : 0 –  𝜎�̅� 

𝑏1: 0 – 0.1000 

p : 0.900 – 0.999 

𝑡, 𝑚𝐷, 𝑠𝐷 , 𝑚�̅� , and 𝑠�̅� are defined in arbitrary units. 

A.2.2. Additional Input Options 

A.2.2.1. Plots 
Users can select between an extended and limited plot range. 

A.2.2.2.2. Tables 
Users can define the number of decimal digits for results, ranging from 1 to 10. 

A.3. Software Availability and Requirements 
Program name: Bayesian Diagnostic Insights 

Version: 2.1.0 

Project home page: https://www.hcsl.com/Tools/BayesianDiagnosticInsights/ (accessed on October 4, 2024) 

https://www.hcsl.com/Tools/BayesianDiagnosticMeasures/
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Program source: BayesianDiagnosticInsights.nb . Available at: 
https://www.hcsl.com/Tools/BayesianDiagnosticInsights/BayesianDiagnosticInsights.nb (accessed on 
Npvember 7, 2024). 

Operating systems: Microsoft Windows 10+, Linux 3.15+, Apple macOS 11+  

Programming language: Wolfram Language 

Other software requirements: To run the program and read the BayesianDiagnosticInsightsCalculations.nb file 
Wolfram Player® ver. 14.0+  is required, freely available at https://www.wolfram.com/player/ (accessed on 
September 23, 2024) or Wolfram Mathematica® ver. 14.0+. 

System requirements: Intel® i9™ or equivalent CPU and 32 GB of RAM 

License: Attribution—Noncommercial—ShareAlike 4.0 International Creative Commons License 

A.4. A Note about the Program 
About the Program Controls 
The program features an intuitive tabbed user interface to streamline user interaction and facilitate effortless 
navigation across multiple modules and submodules.  

Users may define the numerical settings with menus or sliders. Sliders are finely manipulated by pressing the 
alt or opt key while dragging the mouse. Pressing the shift or ctrl keys can even more finely manipulate them. 

Dragging with the mouse while pressing the ctrl, alt, or opt keys zooms plots in or out. When the mouse cursor 
is positioned over a point on a curve in a plot, the coordinates of that point are displayed, and vertical drop 
lines are drawn to the respective axes. 
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