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Abstract 
Background: In medical diagnostics, determining disease probabilities and understanding associated 
uncertainty and confidence intervals are essential for patient care. 

Objective: This study introduces a software tool developed in the Wolfram Language for the parametric 
estimation, visualization, and comparison of Bayesian diagnostic measures and their uncertainty. 

Methods: The tool employs Bayes' theorem to compute posterior probabilities for disease and absence 
of the disease, and diagnostic thresholds derived positive and negative predictive values. It also 
quantifies their sampling, measurement, and combined uncertainty using normal, lognormal, and 
gamma distributions, applying uncertainty propagation methods.  

Results: The tool generates diagnostic measures, standard uncertainty, and confidence intervals 
estimates and provides their plots, supporting clinical decision-making. A case study using fasting 
plasma glucose data from the National Health and Nutrition Examination Survey in the USA showcases 
its application in diagnosing diabetes mellitus, highlighting the significant role of measurement 
uncertainty. 

Conclusion: The software enhances the estimation and facilitates the comparison of Bayesian 
diagnostic measures, which are critical for medical practice. It provides a framework for analyzing 
uncertainty and assists in understanding and applying probabilistic methods in medical diagnostics. 

Keywords: Bayesian diagnosis; prior probability; posterior probability; likelihood; positive predictive 
value; negative predictive value; parametric distribution; combined uncertainty; measurement 
uncertainty; sampling uncertainty; probability density function; disease; diabetes mellitus 

1. Introduction 
1.1. Medical Diagnosis 

Diagnosis in medicine is fundamentally the process of identifying the unique characteristics of a disease 
through abduction, deduction, and induction (Stanley and Campos 2013). The term' diagnosis,' 
originating from the Greek 'διάγνωσις' meaning 'discernment' (Weiner, Simpson, and Oxford University 
Press 1989 2004), underscores the critical role of distinguishing between healthy and diseased states in 
individuals. We can define diagnosis as the stochastic mapping of symptoms, signs, and laboratory and 
medical imaging findings onto a particular disease condition derived from medical knowledge.  

1.1.1. Threshold Based Diagnosis 
We apply diagnostic tests or procedures to binary classification of individuals into diseased or 
nondiseased populations. The probability distributions of the measurands of a quantitative diagnostic 
test in these populations overlap. Despite this, we dichotomize the results by setting a diagnostic 
threshold or cut-off point (Zou, O’Malley, and Mauri 2007). However, reliance on a single threshold for 
diagnosis across a spectrum of data points introduces uncertainty due to the overlapping probability 
distributions of the measurand in both nondiseased and diseased groups (Chatzimichail and Hatjimihail 
2023). Nevertheless, this dichotomous methodology signifies a substantial transformation in medical 
decision-making by correlating a continuum of evidence with binary clinical decisions, such as the 
decision to treat or not to treat. (Djulbegovic et al. 2015). 

1.1.2. Diagnostic Accuracy Measures 
To ensure patients' safety, the correctness of this classification must be rigorously evaluated. Among the 
numerous diagnostic accuracy measures (DAM) in the literature, only a few are routinely used for 
assessing the diagnostic accuracy of threshold-based diagnostic tests in clinical research and practice 
(Šimundić 2009). These include positive and negative predictive values, defined conditionally on the test 
outcome and are prevalence-dependent.  

1.1.3. Bayesian Diagnosis 
In medical diagnostics, Bayes' theorem  (Gelman et al. 2013) is pivotal in transforming the initial 
probability of a disease into a posterior probability following diagnostic tests (Viana and Ramakrishnan 
1992; Gelman et al. 2013; van de Schoot et al. 2021; Bours 2021; Fischer 2021; Chatzimichail and 
Hatjimihail 2023). This theorem links the direct probability P(H|E) of a hypothesis H given specific data E 
to the inverse probability P(E|H) of data E given the hypothesis H (Joyce 2021). 



2 
 

1.2. Uncertainty 
Uncertainty represents imperfect or incomplete information. When quantifiable, we can express it with 
probability (Ayyub and Klir 2006).  

1.2.1. Measurement Uncertainty 
Given the intrinsic variability of measurements, measurement uncertainty is defined as a 'parameter, 
associated with the result of a measurement, that characterizes the dispersion of the values that could 
reasonably be attributed to the measurand'. This measurement uncertainty concept supplants the 
traditional notion of total analytical error (Oosterhuis and Theodorsson 2016). 

1.2.2. Sampling Uncertainty 
We derive diagnostic measures from screening or diagnostic tests applied to population samples. The 
variability within these samples contributes to their overall uncertainty (M H Ramsey S L R Ellison P 
Rostron 2019). This intrinsic heterogeneity is present even when simple random sampling techniques are 
used (Ellison and Williams 2012). 

1.2.3. Uncertainty of Diagnostic Accuracy Measures and Bayesian Posterior 
Probabilities 

We have already explored the uncertainty of diagnostic accuracy measures and Bayesian posterior 
probability for disease, which can significantly impact their clinical usefulness  (Chatzimichail and 
Hatjimihail 2021, 2024). Estimating, evaluating, and mitigating this uncertainty is critical in medical 
diagnosis. 

1.3. Bayesian Diagnostic Measures 
This project introduces a novel software tool designed for the parametric estimation and visualization of 
four diagnostic measures derived from Bayes' theorem, along with their associated uncertainty: 

a) The positive predictive value and negative predictive value (Bours 2021). 

b) The Bayesian posterior probability of disease and its complement, the Bayesian posterior probability 
for the absence of disease. 

To the best of our knowledge, this is the first publication comparing the four Bayesian diagnostic 
measures mentioned above and their uncertainty. 

2. Methods 
2.1. Calculations 

2.1.1. Calculation of Bayesian Diagnostic Measures 
Bayes' theorem relates the probability 𝑃(𝐸|𝐻) of a hypothesis 𝐻 given observed data 𝐸 to the inverse 
probability 𝑃(𝐸|𝐻) of observing 𝐸 given 𝐻, expressed as: 

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
 

=
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸|𝐻)𝑃(𝐻) + 𝑃(𝐸|𝐻)𝑃(𝐻)
 

=
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸|𝐻)𝑃(𝐻) + 𝑃(𝐸|�̅�)(1 − 𝑃(𝐻))
 

where �̅� represents the negation of hypothesis 𝐻. 

2.1.1.1. Positive and Negative Predictive Value 
If 𝐷denotes the presence and �̅� the absence of a disease, 𝐹𝐷(𝑥|𝜽) the CDF of the test measurand in the 
presence of the disease, 𝐹�̅�(𝑥;  𝜽) the CDF in the absence of the disease, and 𝑣 the prevalence or the 
prior (pretest) probability 𝑃(𝐷) for disease, we can calculate the positive predictive value of a diagnostic 
test 𝑇 for a diagnostic threshold 𝑡 as: 
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𝑃(𝐷|𝑇 ≥ 𝑡) =
𝑃(𝑇 ≥ 𝑡|𝐷)𝑃(𝐷)

𝑃(𝑇 ≥ 𝑡|𝐷)𝑃(𝐷) + 𝑃(𝑇 ≥ 𝑡|�̅�)(1 − 𝑃(𝐷))
 

=
(1 − 𝐹𝐷(𝑡|𝜽))𝑣

(1 − 𝐹𝐷(𝑡|𝜽))𝑣 + (1 − 𝐹�̅�(𝑡|𝜽))(1 − 𝑣)
 

and the negative predictive value as: 

𝑃(�̅�|𝑇 < 𝑡) =
𝑃(𝑇 < 𝑡|�̅�)𝑃(�̅�)

𝑃(𝑇 < 𝑡|�̅�)𝑃(�̅�) + 𝑃(𝑇 < 𝑡|𝐷)𝑃(𝐷)
 

=
𝐹𝐷(𝑡|𝜽)(1 − 𝑣)

(1 − 𝐹�̅�(𝑡|𝜽))(1 − 𝑣) + 𝐹𝐷(𝑡|𝜽)𝑣
 

In the above equations 𝑃(𝑇 ≥ 𝑡|𝐷) and 𝑃(𝑇 < 𝑡|�̅�) are respectively the sensitivity and the specificity of 
the test. 

2.1.1.2. Posterior Probability for Disease and Absence of Disease 
Consequently, if 𝑓𝐷(𝑥|𝜽) the PDF of the test measurand in the presence of the disease, and 𝑓�̅�(𝑥;  𝜽) the 
PDF in the absence of the disease, we calculate the posterior (post-test) probability for disease of a 
diagnostic test 𝑇 for a measurand value 𝑡 as: 

𝑃(𝐷|𝑇 = 𝑡) =
𝑃(𝑇 = 𝑡|𝐷)𝑃(𝐷)

𝑃(𝑇 = 𝑡|𝐷)𝑃(𝐷) + 𝑃(𝑇 = 𝑡|�̅�)(1 − 𝑃(𝐷))
 

=
𝑓𝐷(𝑡|𝜽)𝑣

𝑓𝐷(𝑡|𝜽)𝑣 + 𝑓�̅�(𝑡|𝜽)(1 − 𝑣)
 

and the posterior (post-test) probability for the absence of disease as: 

𝑃(�̅�|𝑇 = 𝑡) =
𝑃(𝑇 = 𝑡|�̅�)𝑃(�̅�)

𝑃(𝑇 = 𝑡|�̅�)(1 − 𝑃(𝐷)) + 𝑃(𝑇 = 𝑡|𝐷)𝑃(𝐷)
 

=
𝑓�̅�(𝑡|𝜽)(1 − 𝑣)

𝑓�̅�(𝑡|𝜽)(1 − 𝑣) + 𝑓𝐷(𝑡|𝜽)𝑣
= 1 − 𝑃(𝐷|𝑇 = 𝑡) 

 

2.1.2. Uncertainty Quantification 
Uncertainty of input parameters can appear as standard uncertainty 𝑢(𝑡), representing the standard 
deviation of 𝑡, and expanded uncertainty 𝑈(𝑡), which defines a range around 𝑡 with a probability 𝑝 
(Kallner et al. 2012). 

2.1.2.1. Measurement Uncertainty 
Measurement uncertainty is estimated according to "Guide to the Expression of Uncertainty in 
Measurement" (GUM) (Joint Committee for Guides in Metrology 2011) and "Expression of Measurement 
Uncertainty in Laboratory Medicine" (Kallner et al. 2012). Bias is considered a component of this 
uncertainty (White 2008). The relationship between the standard measurement uncertainty 𝑢𝑚(𝑡) to the 
value of the measurand 𝑡, is typically represented as  (Ellison and Williams 2012): 

𝑢𝑚(𝑡) = √𝑏0
2 + 𝑏1

2𝑡2 

 where 𝑏0 and 𝑏1 are constants. 

For a linear approximation, it is expressed as: 

𝑢𝑚(𝑡) ≅ 𝑏0 + 𝑏1𝑡 

2.1.2.2. Sampling Uncertainty of Means and Standard Deviations 
Standard uncertainties in means and standard deviations are estimated using the central limit theorem 
and the chi-square distribution (Agresti, Franklin, and Klingenberg 2023; Miller and Miller 2018; J. 
Aitchison 1957) as: 
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𝑢𝑠(𝑚𝑃) ≅
𝑠𝑃

√𝑛𝑃

 

𝑢𝑠(𝑠𝑃) ≅
𝑠𝑝

√2(𝑛𝑃 − 1)
 

where 𝑚𝑃 and 𝑠𝑃  are the mean and standard deviation of a measurand in a population sample of size 𝑛𝑃. 

2.1.2.3. Sampling Uncertainty of Prevalence or Prior Probability for Disease  
Given the numbers  𝑛𝐷 and 𝑛�̅� of diseased and nondiseased individuals in a population sample, the 
standard uncertainty of the prevalence or prior probability for disease 𝑣 =

𝑛𝐷

𝑛�̅�+𝑛𝐷
  is approximated as: 

𝑢𝑠(𝑣) ≅ √
(2 + 𝑛�̅�)(2 + 𝑛𝐷)

(4 + 𝑛�̅� + 𝑛𝐷)3
 

using the Agresti–Coull adjustment of the Waldo interval (Agresti and Coull 1998). 

2.1.2.4. Measures Combined Uncertainty  
The standard combined uncertainty 𝑢𝑐(𝑡) of the diagnostic measures is computed via uncertainty 
propagation rules, employing a first-order Taylor series approximation (B. M. Wilson and Smith 2013) 
(refer to Supplemental File II: BayesianDiagnosticInsightsCalculations.nb). When there are l components 
of uncertainty, each with standard uncertainty 𝑢𝑖(𝑡), then: 

𝑢𝑐(𝑡) = √∑ 𝑢𝑖(𝑡)2

𝑙

𝑖=1

 

2.1.2.5. Measures Expanded Uncertainty  
The effective degrees of freedom 𝜈𝑒𝑓𝑓  for the combined standard uncertainty 𝑢𝑐(𝑡)  with l components 
𝑢𝑖(𝑡), are determined using the Welch–Satterthwaite formula (Welch 1947; Satterthwaite 1946): 

𝜈𝑒𝑓𝑓(𝑡) ≅
𝑢𝑐(𝑡)4

∑
𝑢𝑖(𝑡)4

𝜈𝑖

𝑙
𝑖=1

 

where 𝜈𝑖  the respective degrees of freedom. 

If 𝜈𝑚𝑖𝑛  the minimum of 𝜈1, 𝜈2, … , 𝜈𝑙, then: 

𝜈𝑚𝑖𝑛 ≤ 𝜈𝑒𝑓𝑓(𝑥) ≤ ∑ 𝜈𝑖

𝑙

𝑖=1

 

The expanded combined uncertainty 𝑈𝑐(𝑡) at a confidence level 𝑝 is estimated as:  

𝑈𝑐(𝑡) ≅ (𝐹𝜈
−1 (

1 − 𝑝

2
) 𝑢𝑐(𝑡), 𝐹𝜈

−1 (
1 + 𝑝

2
) 𝑢𝑐(𝑡)) 

where  𝐹𝑣(𝑧) is the Student's t-distribution cumulative distribution function with 𝜈 degrees of freedom and 
𝑢𝑐(𝑡) is the standard combined uncertainty of a Bayesian diagnostic measure.  

Consequently, the confidence interval of 𝑡 at the same confidence level 𝑝 is approximated as: 

𝐶𝐼𝑝(𝑡) ≅ (𝑥 +  𝐹𝜈
−1 (

1 − 𝑝

2
) 𝑢𝑐(𝑡), 𝑥 + 𝐹𝜈

−1 (
1 + 𝑝

2
) 𝑢𝑐(𝑡)) 

The confidence intervals of the Bayesian diagnostic measures are truncated to the [0,1] range. 

2.2. The Software 
2.2.1. Program Overview 

The software program Bayesian Diagnostic Insights was developed in Wolfram Language, using Wolfram 
Mathematica® Ver 14.0 (Wolfram Research, Inc., Champaign, IL, USA), to facilitate the estimation and 
comparison of Bayesian diagnostic measures. This interactive program was designed to estimate and 
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plot the values, the standard sampling, measurement, and combined uncertainty, and the confidence 
intervals of Bayesian diagnostic measures for a screening or diagnostic test (refer to Figures 1 and 2). 

The program is freely accessible as a Wolfram Language notebook (.nb) (Supplemental File I: 
BayesianDiagnosticInsights.nb). It can be executed on Wolfram Player® or Wolfram Mathematica® (refer 
to Appendix A.3). Given the intricate nature of the required calculations, it necessitates substantial 
computational resources. 

 

Figure 1. A simplified flowchart of the program Bayesian Diagnostic Insights. 

2.2.2. Input Parameters 
2.2.2.1. Parametric Distributions 

Users select the distribution of the measurand for a diseased and nondiseased population from a 
predefined list of parametric distributions: 

a) Normal distribution 
b) Lognormal distribution 
c) Gamma distribution. 

2.2.2.2. Bayesian Diagnostic Measures 
Users select the Bayesian diagnostic measures to be evaluated among the following: 

a) The positive predictive value 𝑃(𝐷|𝑇 ≥ 𝑡) 
b) The negative predictive value 𝑃(�̅�|𝑇 < 𝑡) 
c) The posterior probability for disease 𝑃(𝐷|𝑇 = 𝑡) 
d) The posterior probability for the absence of disease 𝑃(�̅�|𝑇 = 𝑡) 

2.2.2.3. Definition of Population Parameters and Sample Statistics 
 For each population, users define the mean μ, and the standard deviation σ of the measurand, along 
with the prior probability or prevalence of disease v. The parameters μ and σ are specified in arbitrary 
units. 
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For each population sample, users define its size n, the mean m, and the standard deviation s of the 
measurand. The statistics m and s are also specified in arbitrary units. 

2.2.2.4. Measurement Uncertainty 
Users select a linear or nonlinear equation of the measurement uncertainty versus the value 𝑡 of the 
measurand. They define the constant contribution 𝑏0 to the standard measurement uncertainty, the 
proportionality constant 𝑏1,  and the number of quality control samples analyzed for its estimation. 

For more details about the input of the program please refer to Appendix A2: Input. 

2.2.3. Output  
The program generates plots and tables detailing diagnostic measures, including their standard 
sampling, measurement, combined uncertainty, and associated confidence intervals. By providing this 
extensive array of input parameters, output plots, and tables, the program presents a robust platform for 
exploring and comparing Bayesian diagnostic measures and their uncertainties, utilizing parametric 
distributions of medical diagnostic measurands. 

We present more detailed documentation of the interface of the program in Supplemental file III: 
BayesianDiagnosticInsightsInterface.pdf 

 

Figure 2. A screenshot of the program Bayesian Diagnostic Insights. 

2.3. Illustrative Case Study 
As previously described, we completed an illustrative case study to demonstrate the program's 
application (Chatzimichail and Hatjimihail 2024). We used fasting plasma glucose (FPG) as the 
diagnostic test measurand for the Bayesian diagnosis of diabetes mellitus (hereafter referred to as 
"diabetes"), where the oral glucose tolerance test (OGTT) served as the reference method. Diabetes 
diagnosis was confirmed if the plasma glucose value was equal to or greater than 200 mg/dl, measured 
two hours after 75 g of glucose oral administration (29)  during an OGTT (2-h PG). The study focused on 
individuals aged 70 to 80 years, reflecting the significant correlation between age and diabetes 
prevalence (Sun et al. 2022).  

Data from the National Health and Nutrition Examination Survey (NHANES) was collected from 
participants from 2005 to 2016 (n = 60,936), as described previously (Chatzimichail and Hatjimihail 
2024). NHANES is a comprehensive survey assessing the health and nutritional status of adults and 
children in the United States  (National Center for Health Statistics 2005-20016).  
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Inclusion criteria were valid FPG and OGTT results (n = 13,836), no prior diabetes diagnosis (National 
Center for Health Statistics 2005-20016) (n = 13,465), and age 70–80 years (n = 976). 

Participants with a 2-h PG measurement ≥200 mg/dl were classified as diabetic (n = 154).  

The prevalence or prior probability of diabetes, along with the probability distributions for fasting plasma 
glucose (FPG) in both diabetic and nondiabetic individuals, were estimated using empirical Bayes 
methods (Petrone, Rousseau, and Scricciolo 2014). 

We estimated the prevalence or prior probability of diabetes as follows: 

𝑣 ≅
154

976
= 0.158 

 We present the FPG datasets statistics in Table 1 (hereafter, FPG and its uncertainty are expressed in  
mg/dl). 

Table 1. Descriptive statistics of the datasets and the estimated lognormal distributions of the diabetic 
and nondiabetic populations. 

 
Diabetic Participants Nondiabetic Participants 

Dataset 𝐿𝐷  𝑙𝐷  Dataset 𝐿�̅� 𝑙�̅� 
n 154 - - 822 - - 

Mean (mg/dl) 120.7 120.7 120.7 102.6 102.6 102.6 
Median (mg/dl) 117.0 119.4 119.4 102.0 102.1 102.1 

Standard Deviation (mg/dl) 19.1 17.8 17.7 10.9 10.9 10.7 
Mean Uncertainty (mg/dl) 1.586 1.586 0 1.028 1.028 0 

Skewness 1.448 0.446 0.444 0.523 0.315 0.312 
Kurtosis 6.354 3.355 3.352 3.445 3.177 3.174 

p-value (Cramér–von Mises test) - 0.294 0.295 - 0.281 0.299 
 

Lognormal distributions were employed to model FPG measurands in diabetic and nondiabetic 
participants using the maximum likelihood estimation method (Myung 2003). Parametrized for their 
means 𝜇𝐷 and 𝜇�̅�, and standard deviations 𝜎𝐷  and 𝜎�̅�, were defined as: 

𝐿𝐷 = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝐷, 𝑠𝐷) = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(120.671,17.720) 

𝐿�̅� = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑚�̅�, 𝑠�̅�) = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(102.642,10.653) 

Quality control data for  FPG measurements from NHANES for the same period (2005–2016) included 
1350 QC samples. A weighted nonlinear least squares analysis (Nielsen 2007) provided the following 
function for standard measurement uncertainty 𝑢𝑚(𝑡) relative to the measurement value 𝑡: 

𝑢𝑚(𝑡) = √𝑏0
2 + 𝑏1

2𝑡2 = √0.7501 + 0.00012𝑡2 

where 𝑏0 = 0.866 and 𝑏1 = 0.0109. 

We estimated the means of the standard measurement uncertainty of FPG of the diabetic and 
nondiabetic participants as: 

�̂�𝐷 ≅ 1.586 mg/dl  

�̂��̅� ≅ 1.028 mg/dl  

 Consequently, we estimated the distributions of the measurands, assuming negligible measurement 
uncertainty, as: 

𝑑𝐷 ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝑚𝐷, √𝑠𝐷
2 − �̂�𝐷

2 ) ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(120.671,17.720) 

𝑑�̅� ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝑚�̅�, √𝑠�̅�
2 − �̂��̅�

2 ) ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(102.642,10.653) 
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 Table 1 presents the descriptive statistics of the estimated lognormal distributions for diabetic and 
nondiabetic populations and the respective p-values from the Cramér–von Mises goodness-of-fit test 
(Darling 1957). 

Figures 3 and 4 show the estimated PDFs of FPG in the diabetic and nondiabetic populations, assuming a 
lognormal distribution and negligible measurement uncertainty, and the histograms of the respective 
NHANES datasets. 

 

Figure 3. The estimated PDF of the FPG (mg/dl) in diabetic participants, assuming a lognormal 
distribution and negligible measurement uncertainty, and the histogram of the respective NHANES 
dataset, with the distribution parameters in Table 2. 
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Figure 4. The estimated PDF of the FPG (mg/dl) in nondiabetic participants, assuming a lognormal 
distribution and negligible measurement uncertainty, and the histogram of the respective NHANES 
dataset, with the parameters of the distribution in Table 2. 

Likelihoods and posterior probabilities were estimated accordingly. 

3. Results 
The program's application results are presented in Figures 5-19, while the program settings are displayed 
in Table 2. 

Table 2. The settings of the program 'Bayesian Diagnostic Insights' for the figures 5-19 

 
Units Figures 

5-6 
Figures 

7-8 
Figure 9 

Figures 
10-11 

Figures 
12-13 

Figures 
14-15 

Figures 
16-17 

Figure 18 Figure 19 

p  - - - - 0.95 - 0.95 - 0.95 

𝑡 mg/dl 32.0– 
210.0 

126 126 32.0– 
210.0 

32.0– 
210.0 

126.0 126.0 126.0 126.0 

𝑚𝐷 mg/dl 120.8 120.8 120.8 120.8 120.8 120.8 120.8 120.8 120.8 

𝑠𝐷 mg/dl 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 

𝑛𝐷  154 - 154 154 154 - - 154 154 

𝑚𝐷 mg/dl 102.6 102.6 102.6 102.6 102.6 102.6 102.6 102.6 102.6 

𝑠𝐷 mg/dl 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 

𝑛𝐷  822 - 822 822 822 - - 822 822 
𝑛  976 - 976 976 976 976 976 976 976 

v  0.158 0.001-
0.999 

0.158 0.158 0.158 0.001-
0.999 

0.001-
0.999 

0.158 0.158 

𝑏0  0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 
𝑏1  0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 
𝑛𝑈   - - - - 1350 - 1350 - 1350 

𝑑𝐷  lognormal lognormal 
normal 

lognormal 
gamma 

lognormal lognormal lognormal lognormal lognormal lognormal 

𝑑𝐷  lognormal lognormal 
normal 

lognormal 
gamma 

lognormal lognormal lognormal lognormal lognormal lognormal 

 

Figure 5 shows the plots of: 

a) The positive predictive value 𝑃(𝐷|𝑇 ≥ 𝑡) of FPG for diabetes versus threshold value 𝑡 (mg/dl), (orange 
curve). The curve is smooth, increasing monotonically, and approximately sigmoidal.  𝑃(𝐷|𝑇 ≥ 𝑡) is 
asymptotically equal to the prevalence of diabetes for lower values of 𝑡, then rises rapidly to become 
asymptotically equal to 1.00.  

b) The posterior probability for diabetes versus FPG value 𝑡 (mg/dl). The curve is smooth, approximately 
double sigmoidal. For 𝑡 = 86.8 mg/dl  𝑃(𝐷|𝑇 = 𝑡) has a minimum value of 0.04. 𝑃(𝐷|𝑇 = 𝑡) is 
asymptotically equal to 1.00 for lower values of 𝑡, then decreases rapidly to its minimum before 
rising rapidly again to become asymptotically equal to 1.00.  
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Figure 5. Positive predictive value and posterior probability for diabetes versus FPG value 𝑡 (mg/dl) 
curves plot, with the program's settings in Table 2. 

Figure 6 shows the plots of: 

a) The negative predictive value   𝑃(�̅�|𝑇 < 𝑡) of FPG for diabetes versus threshold value 𝑡 (mg/dl) 
(orange curve). The curve is smooth and unimodal, with a maximum value of 0.96 at  𝑡 = 91.3 mg/dl. 
𝑃(�̅�|𝑇 < 𝑡) is asymptotically equal to 0.00 for lower values of 𝑡, then rises rapidly to its maximum 
and becomes asymptotically equal to 1.00 − 𝑣, where 𝑣 the prevalence of diabetes. 

b) The posterior probability 𝑃(�̅�|𝑇 = 𝑡)  for the absence of diabetes versus FPG value 𝑡 (mg/dl) (orange 
curve). The curve is smooth, unimodal, and approximately double sigmoidal. For an FPG value 𝑡 =

86.8 mg/dl, 𝑃(�̅�|𝑇 = 𝑡) has a maximum value of 0.96. 𝑃(�̅�|𝑇 = 𝑡) is asymptotically equal to 0.00 for 
lower and higher values of 𝑡.  



11 
 

 

Figure 6. Negative predictive value for diabetes and posterior probability for the absence of diabetes 
versus FPG value 𝑡 (mg/dl) curves plot, with the program's settings in Table 2. 

Moreover: 

a) For 𝑡 = 67.4 mg/dl, we have 𝑃(𝐷|𝑇 ≥ 𝑡) = 𝑃(𝐷|𝑇 = 𝑡) = 0.158 = 𝑣 
b) For  𝑡 < 67.4 mg/dl, we have 𝑃(𝐷|𝑇 ≥ 𝑡) < 𝑃(𝐷|𝑇 = 𝑡),  
c) For  𝑡 > 67.4 mg/dl, we have 𝑃(𝐷|𝑇 ≥ 𝑡) > 𝑃(𝐷|𝑇 = 𝑡).  
d) For 𝑡 = 91.0 mg/dl, we have 𝑃(�̅�|𝑇 < 𝑡) = 𝑃(�̅�|𝑇 = 𝑡) = 0.96. 
e) For  𝑡 < 91.0 mg/dl, we have 𝑃(�̅�|𝑇 < 𝑡) < 𝑃(�̅�|𝑇 = 𝑡) 
f) For  𝑡 > 91.0 mg/dl, we have 𝑃(�̅�|𝑇 < 𝑡) > 𝑃(�̅�|𝑇 = 𝑡).  

Additionally, as Figures 7 and 8 show, for an FPG value 𝑡 = 126.0 mg/dl and for prevalence 0.0 < 𝑣 < 1.0: 

a) Both 𝑃(𝐷|𝑇 ≥ 𝑡) and 𝑃(𝐷|𝑇 = 𝑡)  curves are smooth, starting from a probability asymptotically equal 
to 0.00, monotonically increasing as prevalence increases. 

b) Both 𝑃(�̅�|𝑇 < 𝑡) and 𝑃(�̅�|𝑇 = 𝑡) curves are smooth, starting from a probability asymptotically equal 
to 1.00, monotonically decreasing as prevalence increases. 

c) 𝑃(𝐷|𝑇 ≥ 𝑡) > 𝑃(𝐷|𝑇 = 𝑡), and 
d) 𝑃(�̅�|𝑇 < 𝑡) > 𝑃(�̅�|𝑇 = 𝑡). 
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Figure 7. Positive predictive value and posterior probability for diabetes versus prior probability for 
diabetes 𝑣 curves plot for an FPG value 𝑡 = 126 mg/dl, with the other program settings in Table 2. 

 

Figure 8. Negative predictive value for diabetes and posterior probability for the absence of diabetes 
versus prior probability for diabetes 𝑣 curves plot, for an FPG value 𝑡 = 126 mg/dl, with the other settings 
of the program in Table 2. 

Figure 9 shows a table of the Bayesian diagnostic measures for an FPG value 𝑡 = 126 mg/dl, the 
established threshold for the diagnosis of diabetes (ElSayed et al. 2023), assuming normal, lognormal, 
and gamma distributions of FPG. 
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Figure 9. Table of positive predictive value, posterior probability, and negative predictive value for 
diabetes, and posterior probability for the absence of diabetes, for an FPG value 𝑡 = 126 mg/dl, with the 
other settings of the program in Table 2. 

Figure 10 shows the plots of: 

a) The standard sampling, measurement, and combined uncertainty of the positive predictive value for 
diabetes versus FPG value 𝑡 (mg/dl). The curves are smooth and unimodal. 

b) The standard sampling, measurement, and combined uncertainty of the posterior probability for 
diabetes versus FPG value 𝑡 (mg/dl). The curves are smooth and bimodal. 

Figure 11 shows the plots of: 

a) The standard sampling, measurement, and combined uncertainty of the negative predictive value for 
diabetes versus FPG value 𝑡 (mg/dl). The curves are smooth and unimodal. 

b) The standard sampling, measurement, and combined uncertainty of the posterior probability for the 
absence of diabetes versus FPG value 𝑡 (mg/dl). The curves are smooth and bimodal. 

In the assessment of the combined standard uncertainty of posterior probability for diabetes 
𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] and absence of diabetes 𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)]: 

a) They are equal. 
b) They are substantially affected by the measurement uncertainty of FPG. 
c) Two local maxima are observed, corresponding to the regions near the steepest segments of the 

posterior probability curves, which display an approximately double sigmoidal configuration. The 
maxima are quantitatively approximated as follows: 

a. At an FPG value of 𝑡 = 58.5 mg/dl, the combined standard uncertainty is 0.901 for 
𝑃(𝐷|𝑇 = 𝑡) = 0.419 and 𝑃(�̅�|𝑇 = 𝑡) = 0.581. 

b. At an FPG value of 𝑡 = 133.1 mg/dl, the combined standard uncertainty is 0.181 for 

𝑃(𝐷|𝑇 = 𝑡) = 0.726 and 𝑃(�̅�|𝑇 = 𝑡) = 0.274. 

The standard combined uncertainty  𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)]  of the positive predictive value for diabetes of FPG 
has a maximum value of 0.142 for 𝑡 = 126.0 mg/dl, while the standard combined uncertainty 
𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)]  of the negative predictive value for diabetes has a maximum value of 0.894 for 𝑡 =

59.9 mg/dl and and  𝑃(�̅�|𝑇 < 𝑡) = 0.418. This local maxima pattern indicates heightened uncertainty in 
the regions where the diagnostic measures curves demonstrate their most pronounced inflections (refer 
to Figures 5 and 6). 

In addition: 

a) For 𝑡 = 95.8 mg/dl, we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] = 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] = 0.014 and 𝑃(𝐷|𝑇 ≥ 𝑡) = 0.049 and 
𝑃(𝐷|𝑇 = 𝑡) = 0.194.  

b) For 𝑡 = 126.7 mg/dl, we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] = 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] = 0.142, and 𝑃(𝐷|𝑇 ≥ 𝑡) = 0.774 
and 𝑃(𝐷|𝑇 = 𝑡) = 0.517.  
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c) For 0 < 𝑡 < 95.8 mg/dl and  126.7 < 𝑡we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] < 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)].  
d) For 95.8 mg/dl < 𝑡 < 126.8 mg/dl we have 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] < 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] 
e) For 𝑡 = 59.1 mg/dl, we have 𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)] = 𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)] = 0.891 , and 𝑃(�̅�|𝑇 < 𝑡) = 0.948 and 

𝑃(�̅�|𝑇 = 𝑡) = 0.925.  
f) For 𝑡 = 103.1 mg/dl, we have 𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)] = 𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)] = 0.014, and 𝑃(�̅�|𝑇 < 𝑡) = 0.365 

and 𝑃(�̅�|𝑇 = 𝑡) = 0.466.  
g) For 0 < 𝑡 < 59.1 mg/dl and  103.1 < 𝑡 we have 𝑢𝑐[𝑃(𝐷|𝑇 < 𝑡)] < 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)].  
h) For 59.1 mg/dl < 𝑡 < 103.1 mg/dl we have 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] < 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)]. 

The confidence intervals are affected accordingly (refer to Figures 12 and 13): 

a) The confidence intervals of positive predictive value 𝑃(𝐷|𝑇 = 𝑡) (blue curves) are narrower for lower 
and higher values of 𝑡. 

b) The confidence intervals of Bayesian posterior probability 𝑃(𝐷|𝑇 ≥ 𝑡) (orange curves) narrow 
considerably for lower values of 𝑡. 

c) The confidence intervals of Bayesian posterior probability 𝑃(�̅�|𝑇 = 𝑡) are wider at the extremes of 
the 𝑡 spectrum. 

d) The confidence intervals of negative predictive value 𝑃(�̅�|𝑇 < 𝑡) are wide at lower 𝑡 values, to 
become considerably narrower at higher values. 

 

Figure 10. Standard sampling, measurement, and combined uncertainty of the positive predictive value 
and posterior probability for diabetes versus FPG value 𝑡 (mg/dl) curves plot, with the program's settings 
in Table 2. 
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Figure 11. Standard sampling, measurement, and combined uncertainty of the negative predictive value 
for diabetes and posterior probability for the absence of diabetes versus FPG value 𝑡 (mg/dl) curves plot, 
with the program's settings in Table 2. 

 

Figure 12. Confidence intervals of the positive predictive value and posterior probability for diabetes 
versus FPG value 𝑡 (mg/dl) curves plot, with the program's settings in Table 2. 
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Figure 13. Confidence intervals of the negative predictive value and posterior probability for the absence 
of diabetes versus FPG value 𝑡 (mg/dl) curves plot, with the program's settings in Table 2. 

For an FPG value 𝑡 = 126 mg/dl, Figures 14 and 15 show the plots of the standard sampling, 
measurement, and combined uncertainty of positive predictive value, the posterior probability for 
diabetes, the negative predictive value, and the posterior probability for the absence of diabetes versus 
prior probability for diabetes 𝑣. The combined uncertainty of the diagnostic measures is substantially 
affected by the measurement uncertainty of FPG. The curves are unimodal, with the respective maxima 
quantitatively approximated as follows: 

a) For 𝑣 = 0.055,  𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] = 0.196 and 𝑃(𝐷|𝑇 ≥ 𝑡) = 0.495. 
b) For 𝑣 = 0.160,  𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] = 0.135 and 𝑃(𝐷|𝑇 = 𝑡) = 0.497.. 
c) For 𝑣 = 0.589,  𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)] = 0.015 and 𝑃(�̅�|𝑇 < 𝑡) = 0.515. 
d) For 𝑣 = 0.158,  𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)] = 0.135 and 𝑃(�̅�|𝑇 < 𝑡) = 0.515. 

The local maxima indicate heightened uncertainty in the regions where the respective diagnostic 
measures curves demonstrate their most pronounced inflections (refer to Figures 7 and 8). 

Additionally: 

a) For 𝑣 = 0.173 we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] = 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)] = 0.134 , and 𝑃(𝐷|𝑇 ≥ 𝑡) = 0.778 and 
𝑃(𝐷|𝑇 = 𝑡) = 0.521.  

b) For 0 < 𝑣 < 0.173 we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] > 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)]. 
c) For 0.173 < 𝑣 < 1.0 we have 𝑢𝑐[𝑃(𝐷|𝑇 ≥ 𝑡)] < 𝑢𝑐[𝑃(𝐷|𝑇 = 𝑡)].  
d) For 0 < 𝑣 < 1.0 we have 𝑢𝑐[𝑃(�̅�|𝑇 < 𝑡)] < 𝑢𝑐[𝑃(�̅�|𝑇 = 𝑡)].  

Remarkably, the combined uncertainty of the negative predictive value is considerably less than the 
combined uncertainty of the posterior probability for the absence of diabetes.  

The confidence intervals are adjusted accordingly (refer to Figures 16-17): 

a) The confidence intervals of Bayesian posterior probability 𝑃(𝐷|𝑇 = 𝑡) for diabetes (Figure 16, blue 
curves), positive predictive value 𝑃(𝐷|𝑇 ≥ 𝑡) (Figure 16, blue curves), Bayesian posterior probability 
𝑃(�̅�|𝑇 = 𝑡) for the absence of diabetes  (Figure 17, blue curves) and negative predictive value 
𝑃(�̅�|𝑇 < 𝑡) (Figure 17, orange curves)  are narrowest at both lower and higher prevalences. 

b) The confidence intervals of 𝑃(𝐷|𝑇 ≥ 𝑡) (Figure 16, orange curves) are generally narrower than the 
confidence intervals of 𝑃(𝐷|𝑇 = 𝑡) (Figure 16, blue curves). 

c) The confidence intervals of 𝑃(�̅�|𝑇 < 𝑡)(Figure 17, orange curves) are considerably narrower than the 
confidence intervals of 𝑃(�̅�|𝑇 = 𝑡) (Figure 17, blue curves). 
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Figure 14. Standard sampling, measurement, and combined uncertainty of the positive predictive value 
and posterior probability for diabetes versus prior probability for diabetes v curves plot, for an FPG value 
𝑡 = 126 mg/dl, with the other settings of the program in Table 2. 

 

Figure 15. Standard sampling, measurement, and combined uncertainty of the negative predictive value 
for diabetes, and posterior probability for the absence of diabetes versus prior probability for diabetes v 
curves plot, for an FPG value 𝑡 = 126 mg/dl, with the other settings of the program in Table 2. 
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Figure 16. Confidence intervals of the positive predictive value and posterior probability for diabetes 
versus prior probability for diabetes v curves plot, for an FPG value 𝑡 = 126 mg/dl, with the other settings 
of the program in Table 2. 

 

 

Figure 17. Confidence intervals of the negative predictive value for diabetes and posterior probability for 
the absence of diabetes versus prior probability for diabetes 𝑣 curves plot for an FPG value 𝑡 =
126 mg/dl, with the other settings of the program in Table 2. 
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Figure 18. Table of the sampling, measurement, and combined uncertainty of the Bayesian diagnostic 
measures for an FPG value 𝑡 = 126 mg/dl, with the other program settings in Table 2. 

The table with the standard uncertainty of the Bayesian diagnostic measures of Figure 18 shows that for 
𝑡 = 126 mg/dl, measurement uncertainty is the main component of their combined uncertainty. 

 

Figure 19. Table of the confidence intervals of the Bayesian diagnostic measures for an FPG value 𝑡 =
126 mg/dl, with the other settings of the program in Table 2. 

The table with the confidence intervals of the Bayesian diagnostic measures of Figure 19 shows that for 
𝑡 = 126 mg/dl:  

a) 𝑃(𝐷|𝑇 = 𝑡) < 𝑃(𝐷|𝑇 ≥ 𝑡) 
b) The sizes of the confidence intervals of 𝑃(𝐷|𝑇 ≥ 𝑡) and 𝑃(𝐷|𝑇 = 𝑡) are comparable. 
c) There is a considerable overlap between the confidence intervals of 𝑃(𝐷|𝑇 ≥ 𝑡) and 𝑃(𝐷|𝑇 = 𝑡). 
d) 𝑃(�̅�|𝑇 = 𝑡) < 𝑃(�̅�|𝑇 < 𝑡)  
e) The size of the confidence intervals of 𝑃(�̅�|𝑇 < 𝑡) are considerably less than the size of the 

confidence intervals of 𝑃(�̅�|𝑇 = 𝑡). 
f) There is no overlap between the confidence intervals of 𝑃(�̅�|𝑇 < 𝑡) and 𝑃(�̅�|𝑇 = 𝑡). 

Furthermore, we present all the figures provided by the program for the Illustrative Case Study in 
Supplemental file IV: BayesianDiagnosticInsightsFigures.pdf. 

4. Discussion 
There is a persistent need to estimate diagnostic measures and their uncertainty, especially regarding 
screening and diagnostic tests for potentially life-threatening diseases. The COVID-19 pandemic has 
convincingly exposed this need (Lippi, Simundic, and Plebani 2020; Martin H. Kroll, MD Bipasa Biswas 
Jeffrey R. Budd, PhD Paul Durham, MA Robert T. Gorman, PhD Thomas E. Gwise, PhD Abdel-Baset Halim, 
PharmD, PhD, DABCC Aristides T. Hatjimihail, MD, PhD Jørgen Hilden, MD Kyunghee Song 2011; Tang et 
al. 2020; Deeks et al. 2020; Infantino et al. 2020; Mahase 2020).   

Conventional diagnostic approaches typically rely on set thresholds, often overlooking certain aspects of 
disease pathology. While historically influential, these methods may lack the comprehensive perspective 
required in modern patient-centered medicine. The continuous evolution of disease progression and 
changing patient demographics further complicate the diagnostic process, challenging the limits of 
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traditional methods. In this context, Bayesian inference emerges as a viable alternative, offering 
probabilistic assessments tailored to individual patient profiles (Choi, Johnson, and Thurmond 2006; 
Chatzimichail and Hatjimihail 2023). Bayesian-based diagnostic measures are fundamental to medical 
diagnostics. Bayes' theorem provides a statistical framework to update the probability estimate of a 
disease as new information or test results become available. This approach enables healthcare 
professionals to refine disease probability estimates based on new data and prior knowledge. 

Despite the significant advantages of Bayesian methods in this field, addressing potential challenges in 
this transition is crucial. A significant challenge is the limited academic publications thoroughly exploring 
the statistical distributions of measurands in diseased and nondiseased populations (Smith and Gelfand 
1992). We have developed the software tool introduced in this study to explore and compare two pairs of 
Bayesian diagnostic measures of screening or diagnostic tests, assuming parametric distributions of the 
measurands: 

a) The positive predictive value with the posterior probability for disease and  
b) The negative predictive value for disease with the posterior probability for the absence of disease. 

Estimating the uncertainty inherent in diagnostic measures is a considerable challenge in medical 
diagnostics (Srinivasan, Westover, and Bianchi 2012; Chatzimichail and Hatjimihail 2021, 2024). This 
challenge is particularly pronounced in medical decision-making for potentially life-threatening 
conditions. Assessing uncertainty is crucial for ensuring reliable diagnoses and appropriate clinical 
interventions. Several notable examples of diagnostic measures where uncertainty estimation is critical 
include: 

a) Cardiac troponin for diagnosing myocardial injury and infarction 
Cardiac troponin is a crucial biomarker for diagnosing myocardial injury and infarction (Wereski 
et al. 2021).  

b) Natriuretic peptides for diagnosing heart failure 
Natriuretic peptides, such as B-type natriuretic peptide (BNP) and N-terminal pro-b-type 
natriuretic peptide (NT-proBNP), are essential in diagnosing heart failure (Roberts et al. 2015). 

c) D-dimer for diagnosing thromboembolic events 
The measurement of D-dimer levels plays a crucial role in diagnosing thromboembolic events, 
such as deep vein thrombosis and pulmonary embolism (Freund et al. 2021). 

d) Fasting plasma glucose (FPG), oral glucose tolerance test (OGTT), and glycated hemoglobin 
(HbA1c) for diagnosing diabetes 
Diagnosing diabetes relies on measuring blood glucose levels through tests like FPG, OGTT, and 
HbA1c (ElSayed et al. 2023). 

e) OGTT for diagnosing gestational diabetes 
The oral glucose tolerance test (OGTT) is the standard diagnostic tool for gestational diabetes 
and is vital for the health of both the mother and the developing fetus (Rani and Begum 2016). 

f) Thyroid stimulating hormone (TSH), free serum triiodothyronine (T3), and free serum thyroxine 
(T4) for diagnosing thyroid dysfunction 
Measurement of thyroid function tests, including TSH, free T3, and free T4, is essential for 
diagnosing thyroid dysfunctions (Reyes Domingo, Avey, and Doull 2019). 

Our software allows the exploration of the sampling, measurement, and combined uncertainty of 
Bayesian diagnostic measures and their confidence intervals. 

Confidence interval plots serve multiple purposes: 

a) Precision assessment  

They provide insights into the precision of probability estimates at different measurement levels 
(Greenland et al. 2016).  

b) Decision-making support  

For clinical decision-making, these plots can highlight the measurement thresholds where the 
probability of disease shifts significantly, guiding interventions or further testing.  

c) Epidemiological insights 
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In epidemiological studies, understanding how disease probability varies across a population's 
measurement spectrum helps identify risk factors and inform public health strategies. 

This exploration is vital in quality and risk management in laboratory medicine and may contribute to the 
design and implementation of test accuracy studies (Horvath et al. 2024). Despite extensive research on 
Bayesian diagnosis and uncertainty as separate areas, their intersection remains relatively unexplored 
(Baron 1994; Ashby and Smith 2000). 

The illustrative case study, focusing on individuals aged 70 to 80 years, aimed to minimize age-related 
variations in disease prevalence. This focus demonstrates the considerations required in modern 
diagnostics, where factors such as age, genetics, and lifestyle choices must be accounted for in the 
diagnostic equation. The case study underscores the substantial impact of combined uncertainty on the 
diagnostic process, highlighting the predominant role of measurement uncertainty and the challenging 
path toward enhancing diagnostic accuracy. Improving the analytical methods of screening and 
diagnostic tests could enable the medical community to achieve more accurate diagnoses, facilitating 
more effective and personalized patient care. Analyzing in more detail Figures 5-8, 12,13, 16, and 17 of 
the illustrative case study described above, we may note the following clinical implications: 

a) The positive predictive value 𝑃(𝐷|𝑇 ≥ 𝑡)  of he FPG test is highly influenced by the chosen threshold 
and the prevalence of diabetes, emphasizing the importance of selecting the appropriate cut-off for 
accurate diagnosis. 

b) The double-threshold pattern in the Bayesian posterior probability 𝑃(𝐷|𝑇 = 𝑡)  for diabetes suggests 
the need to understand the pathological implications of different FPG levels for tailored diagnostic 
strategies. 

c) The variability in confidence intervals of both 𝑃(𝐷|𝑇 ≥ 𝑡)  and 𝑃(𝐷|𝑇 = 𝑡)  at middle FPG levels 
underscores the need for cautious interpretation of test results in this range.  

d) The differing trends in negative predictive value 𝑃(�̅�|𝑇 < 𝑡)  highlight the significance of selecting the 
appropriate threshold for excluding diabetes. 

e) The unique behavior of Bayesian posterior probability 𝑃(�̅�|𝑇 = 𝑡) for the absence of diabetes at 
lower FPG values, and the variability in its confidence intervals at both lower and higher FPG values 
impact diagnostic decisions, necessitating careful interpretation. 

f) Despite the interpretative challenges of 𝑃(�̅�|𝑇 < 𝑡) at lower FPG values, it is generally more robust 
than 𝑃(�̅�|𝑇 = 𝑡)  at higher FPG values. 

The tables in Figure 18 indicate limited concordance between the diabetes classification criteria derived 
from the OGTT and FPG tests, consistent with findings previously reported in the literature (Tucker 2020). 
Additionally, it shows that for FPG and diabetes, the point estimation of each Bayesian posterior 
probability is substantially less than the respective predictive value.  

Future research should focus on improving the estimations of the uncertainty of Bayesian diagnostic 
measures of different measurands under a diverse array of clinically and laboratory-relevant parameter 
settings.  

To transition from research to practical application, clinical decision analysis, cost-effectiveness 
studies, and research on risk assessment and quality of care, including implementing studies, are 
required (J. Andre Knottnerus and Buntinx 2011). These efforts are essential for addressing the complex 
issues in diagnostic medicine and developing new and effective strategies to overcome ongoing 
challenges. 

All major general or medical statistical software packages (JASP® ver. 0.20.0, Mathematica® ver. 14.0, 
Matlab® ver. R2023b, MedCalc® ver. 22.008, metRology ver. 1.1-3, NCSS® ver. 24.0.0, NIST Uncertainty 
Machine ver. 2.0.0, OpenBUGS ver. 3.3.0, R ver. 4.3.1, SAS® ver. 9.5, SPSS® ver. 29, Stan ver. 2.33.0, Stata® 
ver. 19, and UQLab ver. 2.0.0) include routines for calculating and plotting various diagnostic measures 
and their confidence intervals. The program presented in this work provides 38 types of plots and 17 
types of comprehensive tables of the four Bayesian diagnostic measures, their uncertainty, and the 
associated confidence intervals (Figure 1), many of which are novel. To the best of our knowledge, neither 
the programs mentioned above nor any other software offers this extensive range of plots and tables 
without requiring advanced statistical programming. 
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The program complements our previously published tools for exploring diagnostic measures and 
Bayesian posterior probability for disease and their uncertainty (Chatzimichail and Hatjimihail 2018, 
2021, 2023, 2024), facilitating their comparison. 

4.1. Limitations of the Program 
This program's limitations, which provide paths for further research, include: 

a) Underlying assumptions  
a. The existence of "gold standards" in diagnostics: In the absence of a "gold standard," 

alternative approaches for classification are available (J. A. Knottnerus and Dinant 1997; 
Pfeiffer and Castle 2005; van Smeden et al. 2014). 

b. The hypothesis that measurements or their transforms follow a normal, lognormal, or 
gamma distribution: There is relevant literature concerning reference intervals, diagnostic 
thresholds, and clinical decision limits (Solberg 1987; Pavlov, Wilson, and Delgado 2012; 
Sikaris 2012; Daly et al. 2013; Ozarda et al. 2018).  

c. The generally accepted bimodality of the measurands, although unimodal distributions 
could be considered (J. M. G. Wilson and Jungner 1968; Petersen and Horder 1992). 

b) Approximations used for the estimations 
a. Utilization of first-order Taylor series approximations: First-order Taylor series approximations 

are employed in the propagation of uncertainty calculations. While this method provides a 
baseline estimation, higher-order approximations or Monte Carlo simulations may yield more 
precise results (Joint Committee for Guides in Metrology 2008, 2011). 

b. Uncertainty approximation in disease prevalence: The uncertainty associated with the 
prevalence or prior probability of a disease is approximated using the Agresti–Coull-adjusted 
Waldo interval. Although this method is widely used, more accurate techniques are available 
(Pires and Amado 2008). 

c. Approximations of the sampling uncertainty for both the sample means and standard deviations:  
These approximations can be refined for smaller sample sizes or in the presence of pronounced 
skewness, as observed in lognormal and gamma distributions (Schmoyeri et al. 1996; Bhaumik, 
Kapur, and Gibbons 2009). 

d. Confidence intervals based on the t-distribution: Confidence intervals are derived using the t-
distribution, which, despite the high relative uncertainty (Williams 2020), is a practical 
alternative to credible intervals in selected scenarios, particularly outside a Bayesian framework  
(Gelman et al. 2013; Stephens 2023). 

While addressing these limitations would considerably increase computational complexity, they 
represent critical areas for future enhancement (Joint Committee for Guides in Metrology 2008, 2020). 
We should, however, keep in mind that that “all models will be based on assumptions and can  only  
approach  complex  reality” (Oosterhuis 2017), as “all  models  are  wrong,  but some models are useful” 
(Box 1979). 

4.2. Limitations of the Case Study  
The primary limitations of the case study are: 

a) Dependence on the OGTT as the reference method for diagnosing diabetes mellitus, despite 
various factors affecting glucose tolerance (Rao, Disraeli, and McGregor 2004; Meneilly and 
Elliott 1999; Geer and Shen 2009; Van Cauter, Polonsky, and Scheen 1997; Colberg et al. 2010; 
Salmerón et al. 1997; Surwit et al. 2002; Pandit et al. 1993; Dupuis et al. 2010).  

b) Approximation of the FPG measurement distributions from NHANES datasets by lognormal 
distributions.  

c) The implied assumption of simple random sampling. 

5. Conclusion 
Bayesian Diagnostic Insights enhances the estimation, visualization, and comparison of Bayesian 
diagnostic measures, including their associated uncertainty. It facilitates better clinical decision-making 
by providing insights into the uncertainty of disease probabilities. The illustrative case study, using FPG to 
diagnose diabetes, demonstrates the impact of measurement uncertainty on diagnostic measures, 
underlining its importance in improving diagnostic practices. Overall, the software provides a 
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comprehensive framework for understanding and applying Bayesian probabilistic methods in medical 
diagnostics, fostering improved assessment and diagnosis of various health conditions. 

6. Supplemental Material 
 The following supplemental files are available at https://www.hcsl.com/Supplements/SBDI.zip: 

a) Supplemental File I:  
BayesianDiagnosticInsights.nb: The program as a Wolfram Mathematica Notebook.  

b) Supplemental File II:  
BayesianDiagnosticInsightsCalculations.nb: The calculations for estimating Bayesian diagnostic 
measures and their standard uncertainty in a Wolfram Mathematica Notebook 

c) Supplemental File III:  
BayesianDiagnosticInsightsInterface.pdf: A brief interface documentation of the program.  

d) Supplemental File IV:  
BayesianDiagnosticInsightsFigures.pdf: The figures of the program's output for the illustrative case 
study.  
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8. Appendix A 
A.1. Notation 

A.1.1. Abbreviations 
𝐷: disease 

�̅�: absence of disease 

 𝑇: diagnostic test 

A.1.2. Parameters 
𝑡: diagnostic threshold 

𝜇𝐷: mean of diseased population 

𝜎𝐷: standard deviation of diseased population 

𝜇�̅� : mean of nondiseased population 

https://www.hcsl.com/Supplements/SBDI.zip
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𝜎�̅�   : standard deviation of nondiseased population 

𝑛𝐷 : size of the diseased population sample 

𝑚𝐷: mean of the diseased population sample 

𝑠𝐷: standard deviation of the diseased population sample 

𝑛�̅�: size of the nondiseased population sample 

𝑚�̅�  : mean of the nondiseased population sample 

𝑠�̅�   : standard deviation of the nondiseased population sample 

𝑣 : prior probability for disease (prevalence rate) 

𝑛𝑈  : number of quality control measurements 

𝑏0  : constant contribution to measurement uncertainty 

𝑏1: measurement uncertainty proportionality constant 

p: confidence level 

𝜽: Parameter vector  

A.1.3. Bayesian Diagnostic Measures 
𝑃(𝐷|𝑇 > 𝑡): positive predictive value 

𝑃(�̅�|𝑇 < 𝑡): negative predictive value 

𝑃(𝐷|𝑇 = 𝑡): posterior probability for disease 

𝑃(�̅�|𝑇 = 𝑡): posterior probability for the absence of disease 

A.1.4. Functions 
𝑓(𝑥): probability density function 

𝐹(𝑥): cumulative distribution function 

𝑢𝑚(𝑥): standard measurement uncertainty 

𝑢𝑠(𝑥): standard sampling uncertainty 

𝑢𝑐(𝑥): standard combined uncertainty 

𝜈𝑒𝑓𝑓(𝑥): effective degrees of freedom 

𝑖𝑛𝑓(𝑓): lower bound of 𝑓 

𝑠𝑢𝑝(𝑓): upper bound of 𝑓 

A.2. Input 
A.2.1. Range of input parameters 

𝑡: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(0, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝜇�̅� − 6𝜎�̅� , 𝜇𝐷 − 6𝜎�̅�)) − 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝜇�̅� + 6𝜎�̅�, 𝜇𝐷 + 6𝜎�̅�) 

𝑛𝐷 : 2 – 10,000 

𝑚𝐷: 0.1 – 10,000 

𝑠𝐷: 0.01 – 1,000 

𝑛�̅�: 2 – 10,000 

𝑚�̅� : 0.1 – 10,000 

𝑠�̅�   : 0.01 – 1,000 

𝑣  : 0.001 – 0.999 

𝑛𝑈 : 20 – 10,000 
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𝑏0 : 0 –  𝜎�̅� 

𝑏1: 0 – 0.1000 

p: 0.900 – 0.999 

𝑡, 𝜇𝐷, 𝜎𝐷 , 𝜇�̅�, and 𝜎�̅� are defined in arbitrary units. 

A.2.2  Additional Input Options 
A.2.1. Plot Range 

Users can select between an extended and limited plot range. 

A.2.2. Tables decimal digits 
Users can define the number of decimal digits for results, ranging from 1 to 10. 

A.3. Software Availability and Requirements 
Program name: Bayesian Diagnostic Measures 

Version: 1.0.0 

Project home page: https://www.hcsl.com/Tools/BayesianDiagnosticInsights/ (accessed on June 7, 
2024) 

Available at: https://www.hcsl.com/Tools/BayesianDiagnosticInsights/BayesianDiagnosticInsights.nb 
(accessed on June 7, 2024) 

Operating systems: Microsoft Windows 10+, Linux 3.15+, Apple macOS 11+  

Programming language: Wolfram Language 

Other software requirements: To run the program and read the 
BayesianDiagnosticInsightsCalculations.nb file Wolfram Player® ver. 12.0+ is required, freely available at: 
https://www.wolfram.com/player/ (accessed on June 7, 2024) or Wolfram Mathematica® ver. 14.0. 

System requirements: Intel® i9™ or equivalent CPU and 32 GB of RAM 

License: Attribution—Noncommercial—ShareAlike 4.0 International Creative Commons License 

A.4. A Note about the Program 
About the Program Controls 
The program features an intuitive tabbed user interface to streamline user interaction and facilitate 
effortless navigation across multiple modules and submodules.  

Users may define the numerical settings with menus or sliders. Sliders are finely manipulated by pressing 
the alt or opt key while dragging the mouse. Pressing the shift or ctrl keys can even more finely 
manipulate them. 

Dragging with the mouse while pressing the ctrl, alt, or opt keys zooms plots in or out. When the mouse cursor 
hovers  over a point on a curve in a plot, the coordinates of that point are displayed, and vertical drop lines are 
drawn to the respective axes. 
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