
 

  

Hellenic Complex Systems Laboratory 

A Software Tool for Estimating Uncertainty of 
Bayesian Posterior Probability for Disease 

Technical Report XXVI 

Theodora Chatzimichail and Aristides T. Hatjimihail 
2024 

 



1 
 

Abstract 
The role of medical diagnosis is essential in patient care and healthcare. Established diagnostic 

practices typically rely on predetermined clinical criteria and numerical thresholds. In contrast, 

Bayesian inference provides an advanced framework that supports diagnosis via in-depth probabilistic 

analysis. This study’s aim is to introduce a software tool dedicated to the quantification of uncertainty 

in Bayesian diagnosis, a field that has seen minimal exploration to date. The presented tool, a freely 

available specialized software program, utilizes uncertainty propagation techniques to estimate the 

sampling, measurement, and combined uncertainty of the posterior probability for disease. It features 

two primary modules and fifteen submodules, all designed to facilitate the estimation and graphical 

representation of the standard uncertainty of the posterior probability estimates for diseased and non-

diseased population samples, incorporating parameters such as the mean and standard deviation of 

the test measurand, the size of the samples, and the standard measurement uncertainty inherent in 

screening and diagnostic tests. Our study showcases the practical application of the program by 

examining the fasting plasma glucose data sourced from the National Health and Nutrition 

Examination Survey. Parametric distribution models are explored to assess the uncertainty of Bayesian 

posterior probability for diabetes mellitus, using the oral glucose tolerance test as the reference 

diagnostic method. 
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1. Introduction 
1.1. Diagnosis in Medicine 

Diagnosis in medicine fundamentally involves identifying the unique characteristics of a 

disease and distinguishing it from other conditions with similar presentations. The term “diagnosis”, 

originating from the Greek word “διάγνωσις” meaning “discernment” (Weiner, Simpson, and Oxford 

University Press 1989 2004), emphasizes the critical role of distinguishing between healthy and diseased 

states in individuals. Diagnostic tests are essential in classifying individuals based on their health 

status. However, the reliance on a singular threshold for diagnosis across a range of data points 

introduces uncertainty, owing to the overlapping probability distributions of a measurand in both 

healthy and diseased groups (Chatzimichail and Hatjimihail 2023). While traditional diagnostic 

methods have been broadly effective, they may not fully encompass the diversity of disease 

manifestations, particularly in varied populations (Choi, Johnson, and Thurmond 2006). 

As underlined previously (Chatzimichail and Hatjimihail 2023), Bayesian inference represents 

a paradigm shift in the field of medical diagnosis, offering a robust framework for integrating various 

sources of information to make probabilistic assessments. At its core, Bayesian inference relies on the 

Bayes’ theorem for updating beliefs in light of new evidence, integrating prior disease probabilities 

with the distribution of diagnostic measurands to calculate posterior probabilities for disease (Bours 

2021; Gelman et al. 2013; van de Schoot et al. 2021; Viana and Ramakrishnan 1992). This approach 

enables a more comprehensive probabilistic assessment, the evaluation of the information conveyed by 

diagnostic measurements, and a personalized patient approach (Choi, Johnson, and Thurmond 2006; 

Topol 2014).  

Historically, the application of Bayesian methods in medicine has undergone significant 

evolution. Despite facing several challenges and being met with skepticism, these methods have 

gradually gained acceptance. 

1.1.1. Bayes’ Theorem in Medical Diagnostics 
Bayes’ theorem, a fundamental principle in probability theory (Gelman et al. 2013), forms a 

connection between the direct probability P(H|E) of a hypothesis H given specific data E, and the 
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inverse probability P(E|H) of data E given the hypothesis H (Joyce 2021). In medical diagnostics, Bayes’ 

theorem is instrumental in transforming the prior probability for disease into a posterior probability 

following diagnostic tests (Bours 2021). 

1.1.2. Challenges in Applying Bayesian Inference  
The application of Bayesian inference in diagnostics, however, faces significant challenges. 

Computational Complexity 
The computational complexity of Bayesian inference requires considerable resources. 

Statistical Distributions in Diagnostics 
A major challenge involves comprehensively understanding the statistical distributions of 

diagnostic test measurands in both diseased and nondiseased populations (Lehmann and Romano 

2008). Calculation of posterior probabilities requires probability density functions (PDF) for the 

measurands in these populations. The normal distribution, often used for its simplicity, may not be 

suitable for measurands with non-normal characteristics like skewness or multimodality. Critical 

evaluation and potential adoption of alternative distributions are necessary for more accurate Bayesian 

diagnostic methods (Lehmann and Romano 2008; Box and Cox 1964; D’Agostino and Pearson 1973). 

Bayesian Diagnosis, our previously published software, addresses this challenge (Chatzimichail and 

Hatjimihail 2023). 

Uncertainty of Bayesian Posterior Probabilities 
Another significant challenge involves estimating the uncertainty associated with Bayesian 

posterior probabilities in disease diagnosis. This uncertainty can substantially affect their clinical utility. 

Despite its critical importance, the task of estimating, evaluating, and mitigating uncertainty in 

Bayesian diagnostic test interpretation has seldom been addressed in medical literature (Srinivasan, 

Westover, and Bianchi 2012). To confront this issue, we have developed Bayesian Diagnostic 

Uncertainty, a software tool for the estimation of uncertainty in Bayesian diagnosis, which is presented 

in detail in this study. 

Both Bayesian Diagnostic Uncertainty and Bayesian Diagnosis, enhance the applicability of 

Bayesian methods in medical diagnostics. 

1.1.3. Quantifying Uncertainty in Diagnostics  
Uncertainty can be quantified and is often expressed probabilistically (Ayyub and Klir 2006). 

Combined Uncertainty 
In the context of Bayesian posterior probability for disease, we consider two main components 

of combined uncertainty: 

Measurement Uncertainty 
This reflects the inherent variability in measurement processes and is defined as a parameter 

characterizing the dispersion of values that could reasonably be attributed to the measurand (Joint 

Committee for Guides in Metrology 2011). While crucial for laboratory quality assurance, the impact of 

measurement uncertainty on clinical decision-making and outcomes is often underexplored and rarely 

quantified (Kallner et al. 2012; Smith et al. 2019). Emerging research focuses on its effects on 

misclassification (Ceriotti et al. 2017) and on diagnostic accuracy measures (Chatzimichail and 

Hatjimihail 2021). 

Sampling Uncertainty 
The variability in sampling contributes to the uncertainty of posterior probability for disease 

(Rostron, Fearn, and Ramsey 2020), and it is essential in evaluating diagnostic methods. 

2. Methods 
2.1. Computational Methods 
2.1.1. Bayes’ Theorem 

Bayes’ theorem calculates the posterior probability 𝑃(𝐷|𝑇) of a disease 𝐷 given a test result 𝑇 =

𝑥 and a parameter vector θ, as follows: 
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𝑃(𝐷|𝑇) =
𝑓𝐷(𝑥|𝜽)𝑟

𝑓𝐷(𝑥|𝜽)𝑟 + 𝑓�̅�(𝑥|𝜽)(1 − 𝑟)
  

Here 𝑟 denotes the prior probability for disease, 𝑓𝐷(𝑥|𝜽) the PDF in disease presence, while 𝑓�̅�(𝑥;  𝜽) 

denotes the PDF in its absence (refer to Appendix A.1 for details). 

2.1.2. Parametric Distributions 
Parametric statistics operate under the assumption that data from a population can be 

accurately represented by a probability distribution with a fixed set of parameters (Geisser and Johnson 

2006). The program supports the following parametric distributions: 

1. Normal distribution 

2. Lognormal distribution 

3. Gamma distribution. 

2.1.3. Uncertainty Quantification 
Uncertainty of input parameters can manifest as standard uncertainty 𝑢(𝑥) , the standard 

deviation of 𝑥, and expanded uncertainty 𝑈(𝑥), a range around 𝑥 encompassing 𝑥 with a probability 𝑝 
(Kallner et al. 2012). 

Measurement Uncertainty 
Measurement uncertainty is computed following guidelines in the “Guide to the expression of 

uncertainty in measurement” (GUM) (Joint Committee for Guides in Metrology 2011) and “Expression 

of measurement uncertainty in laboratory medicine” (Kallner et al. 2012). Bias is considered a 

component of this uncertainty (White 2008). 

The relationship between the standard measurement uncertainty 𝑢(𝑥)  to the value of the 

measurand 𝑥, is generally expressed as: 

𝑢𝑚(𝑥) = √𝑏0
2 + 𝑏1

2𝑥2  

where 𝑏0 is a constant and 𝑏1is a proportionality constant. 

If needed, it is approximated linearly as: 

𝑢𝑚(𝑥) ≅ 𝑏0 + 𝑏1𝑥  

The general approach to estimating the coefficients of the above equations is delineated in 

Appendix A5 of “Quantifying Uncertainty in Analytical Measurement” (Ellison and Williams 2012). 

Sampling Uncertainties of Means and Standard Deviations 
If 𝑚𝑃 and 𝑠𝑃  are the mean and standard deviation of a measurand in a population sample of 

size 𝑛𝑃, then the standard sampling uncertainties of 𝑚𝑃 and 𝑠𝑃 are estimated as: 

𝑢𝑠(𝑚𝑃) ≅
𝑠𝑃

√𝑛𝑃
  

𝑢𝑠(𝑠𝑃) ≅
𝑠𝑝

√2(𝑛𝑃 − 1)
  

using the central limit theorem and the chi-square distribution (Agresti, Franklin, and Klingenberg 

2023; Miller and Miller 2018; J. Aitchison 1957). 

Sampling Uncertainty of Prior Probability for Disease  
If 𝑛𝐷 and 𝑛�̅� are the respective numbers of diseased and nondiseased in a population sample, 

then the standard uncertainty of the prior probability for disease 𝑟 =
𝑛𝐷

𝑛�̅�+𝑛𝐷
 is estimated as: 

𝑢𝑠(𝑟) ≅ √
(2 + 𝑛�̅�)(2 + 𝑛𝐷)

(4 + 𝑛�̅� + 𝑛𝐷)3
  

using the Agresti–Coull adjustment of the Waldo interval (Agresti and Coull 1998). 
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Combined Uncertainty of Posterior Probability for Disease  
The standard combined uncertainty 𝑢𝑐(𝑥) of posterior probability for disease is computed via 

uncertainty propagation rules, employing a first-order Taylor series approximation (B. M. Wilson and 

Smith 2013) (refer to Supplementary File II).  

When there are l components of uncertainty, with standard uncertainties 𝑢𝑖(𝑥), then: 

𝑢𝑐(𝑥) = √∑ 𝑢𝑖(𝑥)
2

𝑙

𝑖=1

  

Obviously,  0 ≤ 𝑢𝑐(𝑥) < 1.0. 
 

2.1.4. Expanded Uncertainty of Posterior Probability for Disease  
When there are l components of uncertainty, with standard uncertainties 𝑢𝑖(𝑥) and 𝑣𝑖 degrees 

of freedom, then the effective degrees of freedom 𝑣𝑒𝑓𝑓  of the combined uncertainty 𝑢𝑐(𝑥) are obtained 

from the Welch–Satterthwaite formula (Welch 1947; Satterthwaite 1946): 

𝑣𝑒𝑓𝑓(𝑥) ≅
𝑢𝑐(𝑥)4

∑
𝑢𝑖(𝑥)4

𝑣𝑖

𝑙
𝑖=1

  

If 𝑣𝑚𝑖𝑛  the minimum of 𝑣1, 𝑣2, … , 𝑣𝑙 , then: 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑒𝑓𝑓(𝑥) ≤ ∑ 𝑣𝑖

𝑙

𝑖=1

  

If 𝐹𝑣(𝑧) is the Student’s t-distribution cumulative distribution function with 𝑣 degrees of freedom and 

𝑢𝑐(𝑥) is the standard combined uncertainty of posterior probability for disease, its expanded combined 

uncertainty 𝑈𝑐(𝑥) at a confidence level 𝑝 is: 

𝑈𝑐(𝑥) ≅ (𝐹𝑣
−1 (

1 − 𝑝

2
) 𝑢𝑐(𝑥), 𝐹𝑣

−1 (
1 + 𝑝

2
) 𝑢𝑐(𝑥))  

The confidence interval of 𝑥 at the same confidence level 𝑝 is approximated as: 

𝐶𝐼𝑝(𝑥) ≅ (𝑥 +  𝐹𝑣
−1 (

1 − 𝑝

2
) 𝑢𝑐(𝑥), 𝑥 + 𝐹𝑣

−1 (
1 + 𝑝

2
) 𝑢𝑐(𝑥)) 

The confidence intervals of the posterior probability for disease were truncated to 

the [0,1] range. 

 

 

2.2. The Software 
2.2.1. Program Overview 

To facilitate the estimation of the uncertainty of Bayesian posterior probability for disease, the 

software program Bayesian Diagnostic Uncertainty was developed in Wolfram Language, using 

Wolfram Mathematica® Ver. 13.3 (Wolfram Research, Inc., Champaign, IL, USA ). Bayesian Diagnostic 

Uncertainty was designed to estimate and plot the standard sampling, measurement, and combined 

uncertainty and the confidence intervals of the Bayesian posterior probability for disease of a screening 

or diagnostic test (See Figure 1). 
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Figure 1. A simplified flowchart of the program Bayesian Diagnostic Uncertainty with the number of input 

parameters and of output types for each submodule. 

This interactive program is freely available as a Wolfram Language notebook (.nb) 

(Supplementary file BayesianUncertainty.nb). It can be run on Wolfram Player® or Wolfram 

Mathematica® (see Appendix A.2). Due to the complexity of the calculations required, it is 

computationally intensive. 

2.2.2. Input Parameters 
The program allows for the definition of three parametric distributions of a measurand for the 

diseased and nondiseased populations. 

Distribution Selection 
The user selects the type of distribution of each population from a predefined list: 

1. Normal distribution 

2. Lognormal distribution 

3. Gamma distribution. 
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Definition of Statistical Parameters 
For each population, the user defines its size n, the mean μ, and the standard deviation σ of 

the measurand. 

Measurement Uncertainty 
The user selects a linear or nonlinear equation of the measurement uncertainty versuss the 

value x of the measurand and defines the constant contribution 𝑏0  to the standard measurement 

uncertainty, the proportionality constant 𝑏1 , and the number of quality control samples that have been 

analyzed for its estimation. 

2.2.3. Output Specifications 

Visualizations 
The program generates a series of plots designed to elucidate various uncertainty measures 

and statistics: 

1. Uncertainty of posterior probability for disease: Plots are generated to show the standard 

sampling, measurement, and combined uncertainty of the posterior probability for disease. 

2. Relative uncertainty of posterior probability for disease: Plots are generated to show the relative 

standard sampling, measurement, and combined uncertainty of the posterior probability for 

disease. 

3. Confidence intervals of posterior probability for disease: Plots are generated to show the 

confidence intervals of the posterior probability for disease, for a user defined confidence level. 

Tables 
For each combination of parametric distributions of the diseased and nondiseased populations, 

the program tabulates for a user-defined measurand value: 

1. The standard sampling, measurement, and combined uncertainty of the posterior probability for 

disease. 

2. The relative standard sampling, measurement, and combined uncertainty of the posterior 

probability for disease. 

3. The confidence intervals of the posterior probability for disease for a user-defined confidence 

level. 

By providing this comprehensive set of input parameters and output specifications (see Figure 

2), the program offers a robust platform for exploring the uncertainty in Bayesian diagnosis of disease 

using parametric distributions of medical diagnostic measurands. 
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Figure 2. A screenshot of the program Bayesian Diagnostic Uncertainty. 

3. Illustrative Case Study 
To demonstrate the application of the program, fasting plasma glucose (FPG) was used as the 

diagnostic test measurand for the Bayesian diagnosis of diabetes mellitus (From now on, when 

mentioning “diabetes”, we are referring to diabetes mellitus). The oral glucose tolerance test (OGTT) 

was used as the reference diagnostic method. A diagnosis of diabetes was confirmed if the plasma 

glucose value was equal to or greater than 200 mg/dl, measured two hours after oral administration of 

75 g of glucose (ElSayed et al. 2023), during an OGTT (2-h PG). The study population was confined to 

individuals aged between 70 and 80 years, a decision guided by the well-documented strong correlation 

between age and the prevalence of diabetes (Sun et al. 2022). 

National Health and Nutrition Examination Survey (NHANES) data from participants was 

retrieved for the period from 2005 to 2016 (n = 60,936) (National Center for Health Statistics 2005-20016). 

NHANES is a series of studies designed to evaluate the health and nutritional status of adults and 

children in the United States.  

The inclusion criteria for participants were: 

1. Valid fasting plasma glucose (FPG) and oral glucose tolerance test (OGTT) results (n = 13,836). 

2. A negative response to NHANES question DIQ010 regarding a diabetes diagnosis (National 

Center for Health Statistics 2005-20016) (n = 13,465). 

3. Age 70–80 years (n = 976). 
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Participants with a 2-h PG measurement ≥200 mg/dl were considered diabetic (n = 154). 

The prior probability for diabetes was estimated as: 

𝑣 =
154

976
= 0.158  

The statistics of the FPG datasets are presented in Table 1 (Hereafter, FPG and its uncertainty 

are expressed in mg/dl). 

Table 1. Descriptive statistics of the fasting plasma glucose datasets. 

 Diabetic Patients Nondiabetic Patients 

n 154 822 

Mean 120.7 102.6 

Median 117.0 102.0 

Standard Deviation 19.1 10.9 

Skewness 1.448 0.523 

Kurtosis 6.354 3.445 

Lognormal distributions were estimated to model FPG measurements in diabetic and 

nondiabetic participants, using the maximum likelihood estimation method (Myung 2003). The 

respective distributions, parametrized for their means 𝜇𝐷 and 𝜇�̅�, and standard deviations 𝜎𝐷 and 𝜎�̅�, 

were the following: 

𝐿𝐷 = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝐷 , 𝜎𝐷) = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(120.671,17.720) 
𝐿�̅� = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇�̅� , 𝜎�̅�) = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(102.642,10.653) 

 

NHANES quality control data of the FPG measurements was retrieved for the same period 

(2005–2016). 1350 QC samples had been analyzed. The weighted nonlinear least squares analysis 

(Nielsen 2007) yielded the following function relating the standard measurement uncertainty 𝑢𝑚(𝑥) to 

the measurement value 𝑥: 

𝑢𝑚(𝑥) = √𝑏0
2 + 𝑏1

2𝑥2 = √0.7501 + 0.00012𝑥2  

where 𝑏0 = 0.866 and 𝑏1 = 0.109. 

The means of the standard measurement uncertainty of the FPG of the included diabetic and 

nondiabetic participants were estimated as: 

�̂�𝐷 ≅ 1.586 mg/dl 
�̂��̅� ≅ 1.028 mg/dl 

 

Consequently, the distributions of the measurands, assuming negligible uncertainty, were 

estimated as: 

𝑙𝐷 ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝜇𝐷 , √𝜎𝐷
2 − �̂�𝐷

2 ) ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(120.671,17.720)   

𝑙�̅� ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝜇�̅�, √𝜎�̅�
2 − �̂��̅�

2 ) ≅ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(102.642,10.653)  

Table 2 displays the descriptive statistics of the estimated lognormal distributions of the 

diabetic and nondiabetic populations, including the respective p -values of the Cramér–von Mises 

goodness-of-fit test (Darling 1957). 

Table 2. Descriptive statistics of the estimated lognormal distributions of the diabetic and nondiabetic populations. 
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 Diabetic Participants Nondiabetic Participants 

Estimated Distribution 𝐿𝐷 𝑙𝐷 𝐿�̅� 𝑙�̅� 

Mean Uncertainty 1.586 0 1.028 0 

Mean 120.7 120.7 102.6 102.6 

Median 119.4 119.4 102.1 102.1 

Standard Deviation 17.8 17.7 10.9 10.7 

Skewness 0.446 0.444 0.315 0.312 

Kurtosis 3.355 3.352 3.177 3.174 

p-value (Cramér–von Mises 

test) 
0.294 0.295 0.281 0.299 

Figures 3 and 4 show the estimated PDFs of FPG in the diabetic and nondiabetic populations, 

assuming a lognormal distribution and negligible measurement uncertainty, and the histograms of the 

respective NHANES datasets. 

 

Figure 3. The estimated PDF of the FPG (mg/dl) in diabetic participants, assuming a lognormal distribution and 

negligible measurement uncertainty, and the histogram of the respective NHANES dataset, with the parameters 

of the distribution in Table 2. 
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Figure 4. The estimated PDF of the FPG (mg/dl) in nondiabetic participants, assuming a lognormal distribution 

and negligible measurement uncertainty, and the histogram of the respective NHANES dataset, with the 

parameters of the distribution in Table 2. 

Likelihoods and posterior probabilities were estimated accordingly. 

4. Results 
Using the settings of Table 3, the program generated the plots of Figures 5–16 and the tables of 

Figures 17–19.  

 

Figure 5. Standard sampling, measurement, and combined uncertainty of the posterior probability for diabetes 

versus FPG curve plot, with the settings of the program in Table 2. 
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Table 3. The settings of the program Bayesian Diagnostic Uncertainty for Figures 5–19. 

Setting

s 

Figures 5 

and 6 
Figure 7 

Figures 

8 and 9 

Figure 

10 

Figures 

11 and 

12 

Figure 

13 

Figures 

14 and 

15 

Figure 

16 

Figures 

17 and 

18 

Figure 

19 

p - 0.95 - 0.95 - 0.95 - 0.95 - 0.95 

x 
31.0–

192.0 

31.0–

192.0 
126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 

𝜇𝐷 120.7 120.7 120.7 120.7 120.7 120.7 120.7 120.7 120.7 120.7 

𝜎𝐷 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 

𝑛𝐷 154 154 154 154 154 154 - - 154 154 

𝜇�̅� 102.7 102.7 102.7 102.7 102.7 102.7 102.7 102.7 102.7 102.7 

𝜎�̅� 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 

𝑛�̅� 822 822 822 822 822 822 - - 822 822 

n - - - - - - 65–5000 65–5000 - - 

r - - - - - - 0.158 0.158 - - 

𝑏0  0.866 0.866 0.0–0.161 0.0–0.161 0.866 0.866 0.866 0.866 0.866 0.866 

𝑏1  0.0109 0.0109 0.0109 0.0109 0.0–0.1 0.0–0.1 0.0109 0.0109 0.0109 0.0109 

𝑛𝑈 - 1350 - 1350 - 1350 - 1350 - 1350 

𝑙𝐷 lognormal lognormal lognormal lognormal lognormal lognormal lognormal lognormal 

normal 

lognormal 

gamma 

normal 

lognormal 

gamma 

𝑙�̅� lognormal lognormal lognormal lognormal lognormal lognormal lognormal lognormal 

normal 

lognormal 

gamma 

normal 

lognormal 

gamma 
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Figure 6. Relative standard sampling, measurement, and combined uncertainty of the posterior probability for 

diabetes versus FPG curve plot, with the settings of the program in Table 2. 

Figure 5 shows the plots of the standard sampling, measurement, and combined uncertainty 

of posterior probability for diabetes versus FPG, while Figure 6 shows the respective plots of the relative 

standard uncertainty. 

Figure 7 shows the plots of the confidence intervals of posterior probability for diabetes versus 

FPG for a confidence level 𝑝 = 0.95. 

 

Figure 7. Confidence intervals of the posterior probability for diabetes versus FPG curves plot, with the settings of 

the program in Table 2. 

Assessing the combined standard uncertainty of the posterior probability for diabetes, we note 

the following: 
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1. It is substantially affected by measurement uncertainty of FPG. 

2. Two local maxima are observed, corresponding to the regions near the steepest segments of the 

posterior probability curve, which exhibits an approximately double sigmoidal configuration. 

These maxima are quantitatively defined as following: 

2.1. At an FPG value of 58.7 mg/dl, the posterior probability for disease is equal to 0.585, while 

the combined standard uncertainty is equal to 0.893. 

2.2. At an FPG value of 133.2 mg/dl, the posterior probability for disease is equal to 0.725, while 

the combined standard uncertainty is equal to 0.182. 

This pattern of local maxima is indicative of heightened uncertainty in the regions where the 

posterior probability curve demonstrates its most pronounced inflections. The confidence intervals are 

affected accordingly. 

Assessing the relative combined standard uncertainty of the posterior probability for diabetes, 

we note that two local maxima are observed as well, quantitatively defined as following: 

1. At an FPG value of 64.1 mg/dl, the posterior probability for disease is equal to 0.257, while the 

relative combined standard uncertainty is equal to 2.044. 

2. At an FPG value of 128.1 mg/dl, the posterior probability for disease is equal to 0.561, while the 

relative combined standard uncertainty is equal to 0.278. 

Figure 8 shows the plots of the standard sampling, measurement, and combined uncertainty 

of posterior probability for diabetes versus the constant contribution 𝑏0 of measurement uncertainty of 

FPG, while Figure 9 shows the respective plots of the relative standard uncertainty. 

 

Figure 8. Standard sampling, measurement, and combined uncertainty of the posterior probability for diabetes 

versus measurement uncertainty constant contribution 𝑏0 curve plot, with the settings of the program in Table 2. 
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Figure 9. Relative standard sampling, measurement, and combined uncertainty of the posterior probability for 

diabetes versus measurement uncertainty constant contribution 𝑏0 curve plot, with the settings of the program in 

Table 2. 

Figure 10 shows the plots of the confidence intervals of posterior probability for diabetes versus 

the constant contribution 𝑏0 of measurement uncertainty of FPG, for a confidence level 𝑝 = 0.95. 

 

Figure 10. Confidence intervals of the posterior probability for diabetes versus measurement uncertainty constant 

contribution 𝑏0 curves plot, with the settings of the program in Table 2. 
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Figure 11. Standard sampling, measurement, and combined uncertainty of the posterior probability for diabetes 

versus measurement uncertainty proportionality constant 𝑏1 curve plot, with the settings of the program in Table 

2. 

Figure 11 shows the plots of the standard sampling, measurement, and combined uncertainty 

of posterior probability for diabetes versus the proportionality constant 𝑏1 of measurement uncertainty 

of FPG, while Figure 12 shows the respective plots of the relative standard uncertainty. 

 

Figure 12. Relative standard sampling, measurement, and combined uncertainty of the posterior probability for 

diabetes versus measurement uncertainty proportionality constant 𝑏1curve plot, with the settings of the program 

in Table 2. 
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Figure 13. Confidence intervals of the posterior probability for diabetes versus measurement uncertainty 

proportionality constant 𝑏1 curves plot, with the settings of the program in Table 2. 

Figure 13 shows the plots of the confidence intervals of posterior probability for diabetes versus 

the proportionality constant 𝑏1 of measurement uncertainty of FPG for a confidence level 𝑝 = 0.95. 

 

Figure 14. Standard sampling, measurement, and combined uncertainty of the posterior probability for diabetes 

versus total population sample size n curve plot, with the settings of the program in Table 2. 
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Figure 15. Relative standard sampling, measurement, and combined uncertainty of the posterior probability for 

diabetes versus total population sample size n curve plot, with the settings of the program in Table 2. 

Figure 14 shows the plots of the standard sampling, measurement, and combined uncertainty 

of posterior probability for diabetes versus the total population size n, while Figure 15 shows the 

respective plots of the relative standard uncertainty. 

Figure 16 shows the plots of the confidence intervals of posterior probability for diabetes versus 

the total population size n, for a confidence level 𝑝 = 0.95. 

 

Figure 16. Confidence intervals of the posterior probability for diabetes versus total population sample size n curve 

plot curves plot, with the settings of the program in Table 2. 
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As anticipated, the impact of sampling uncertainty decreases markedly as the size of the 

population sample increases. 

Figure 17 shows a table of the standard sampling, measurement, and combined standard 

uncertainty of posterior probability for diabetes for FPG value equal to 126 mg/dl, while Figure 18 

shows a table of the respective values of relative standard uncertainty. 

 

Figure 17. Table of the standard sampling, measurement, and combined uncertainty of the posterior probability 

for diabetes, with the settings of the program in Table 2. 

 

Figure 18. Table of the relative standard sampling, measurement, and combined uncertainty of the posterior 

probability for diabetes, with the settings of the program in Table 2. 
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Figure 19. Confidence intervals of the posterior probability for diabetes, with the settings of the program in Table 

2. 

Figure 18 shows the confidence intervals of posterior probability for diabetes for FPG value 

equal to 126 mg/dl and confidence level 𝑝 = 0.95. 

The tables distinctly demonstrate the considerable magnitude of uncertainty and relative 

uncertainty associated with the posterior probability for diabetes at a FPG level of 126 mg/dl, the 

established threshold for the diagnosis of diabetes. Furthermore the posterior probabilities delineated 

in the tables suggest a limited concordance between the classification criteria of diabetes derived from 

the OGTT and FPG tests (ElSayed et al. 2023), as found previously in the existing literature (Tucker 

2020). 

5. Discussion 
5.1. Reevaluation of Traditional Diagnostic Methods 

Traditional diagnostic methods rely on the use of predetermined thresholds; however, this 

often fails to consider the complexities of disease pathology. While this has been historically effective, 

it may lack the ability to offer a holistic approach in today’s patient-centered medicine, where 

personalized care is paramount (Obermeyer and Emanuel 2016). The evolving nature of diseases and 

shifts in patient demographics increase the complexity of the diagnostic process, pushing the 

boundaries of conventional methodologies. In this challenging context, Bayesian inference emerges as 

an alternative approach, offering probabilistic evaluations that can adapt to the individual patient 

profiles (Choi, Johnson, and Thurmond 2006; Chatzimichail and Hatjimihail 2023). 

Nevertheless, estimating the uncertainty of posterior probabilities within Bayesian inference 

remains a pivotal challenge (Srinivasan, Westover, and Bianchi 2012). This issue is critically important 

in the context of diagnostic and screening tests for life-threatening conditions or those associated with 

considerable morbidity risk. It underscores the need for well-informed clinical judgments and 

comprehensive uncertainty evaluation in medical decision-making. Key examples include: 

1. Cardiac troponin for diagnosing myocardial injury and infarction (Wereski et al. 2021).  

2. Natriuretic peptides for the diagnosis of heart failure (Roberts et al. 2015). 

3. D-dimer for diagnosing thromboembolic events (Freund et al. 2021). 

4. FPG, OGTT, and glycated hemoglobin (HbA1c) for diagnosing diabetes (ElSayed et al. 2023). 

5. OGTT for the diagnosis of gestational diabetes (Rani and Begum 2016). 

6. Thyroid stimulating hormone (TSH), free serum triiodothyronine (T3), and free serum thyroxine 

(T4) for diagnosing thyroid dysfunction (Reyes Domingo, Avey, and Doull 2019). 
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7. Protein-to-creatinine ratio for the diagnosis of preeclampsia (Rodriguez-Thompson and 

Lieberman 2001). 

8. Creatinine or cystatin C derived glomerular filtration rate (GFR), and albuminuria for diagnosing 

chronic kidney disease (Moynihan, Glassock, and Doust 2013).  

The ability to quantify this uncertainty is not only an academic concern but also a practical 

necessity in improving diagnosis and patient outcomes. 

To address this, our software explores the sampling, measurement, and combined uncertainty 

of Bayesian posterior probabilities. This exploration is not only vital for enhancing clinical decision-

making but also plays a significant role in the fields of quality and risk management in laboratory 

medicine (Haeckel et al. 2016). Additionally, it may contribute to the design and implementation of test 

accuracy studies (J. Andre Knottnerus and Buntinx 2011; Hajian-Tilaki 2014). As mentioned in the 

Introduction section, despite the extensive body of research on Bayesian diagnosis and uncertainty as 

separate entities, the intersection of these two areas remains relatively unexplored (Baron 1994; Ashby 

and Smith 2000). 

The illustrative case study, focusing on individuals aged 70 to 80 years, was designed to 

mitigate age-related variations in disease prevalence. This focus exemplifies the considerations required 

in modern diagnostics, where factors such as age, genetics, and lifestyle choices should be accounted 

for in the diagnostic equation. 

Our software manages through its analysis of sampling, measurement, and combined 

uncertainty (as illustrated in Figures 5, 8, 11, 14, and 17), relative uncertainty (Figures 6, 9, 12, 15, and 

18) and the corresponding confidence limits (Figures 7, 10, 13, 16, and 19), to display its versatility in 

addressing these diagnostic challenges. Although the software’s calculations are highly sophisticated, 

its user-friendly interface renders it an effective tool for medical researchers and professionals. 

The case study from Section 4 highlights the substantial impact of combined uncertainty on the 

diagnostic process. This finding emphasizes the predominant role of measurement uncertainty, and 

thus stresses the demanding path toward enhancing diagnostic accuracy. By improving the analytical 

methods of screening and diagnostic tests, the medical community could achieve more accurate 

diagnosis, leading to more effective and tailored patient care. 

Looking ahead, future research should focus on improving the estimations of the uncertainty 

of posterior probabilities under a diverse array of clinically relevant parameter settings. To transition 

from research into practical application, it is necessary to focus on clinical decision analysis, studies on 

cost-effectiveness, and research on quality of care, which includes conducting implementation studies 

(J. Andre Knottnerus and Buntinx 2011). Such efforts are necessary in addressing the complex issues in 

diagnostic medicine and finding new and effective approaches to tackle ongoing challenges.. 

5.2. Limitations and Future Research Directions 
This program’s limitations, which provide paths for further research, include: 

1. Underlying assumptions:  

1.1. The existence of “gold standards” in diagnostics. If a “gold standard” does not exist, there 

are alternative approaches for classification (J. A. Knottnerus and Dinant 1997; Pfeiffer and 

Castle 2005; van Smeden et al. 2014). 

1.2. The hypothesis of parametric distribution of measurements or their transformations. 

However, existing literature underlines the robustness of nonparametric techniques in 

capturing complex data distributions (Wasserman 2006).  

1.3. The generally accepted bimodality of the measurands, although unimodal distributions 

could be considered (J. M. G. Wilson and Jungner 1968; Petersen and Horder 1992). 

If these assumptions are not valid, the program may underestimate the standard uncertainty 

of the posterior probability for disease. 

2. The use of first-order Taylor series approximations in uncertainty propagation calculations, where 

higher-order approximations may provide more accurate estimations (Joint Committee for Guides 

in Metrology 2011). 
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3. The approximation of the uncertainty of the prior probability for disease using the Agresti–Coull-

adjusted Waldo interval, despite more accurate methods being available (Pires and Amado 2008). 

4. The approximations of the sampling uncertainties for both the sample means and standard 

deviations, which can be improved for smaller samples or pronounced skewness observed in 

lognormal and gamma distributions (Schmoyeri et al. 1996; Bhaumik, Kapur, and Gibbons 2009). 

5. The use of confidence intervals derived from the t-distribution despite the high relative uncertainty 

(Williams 2020). Though not typical in a Bayesian context, this can be employed instead of credible 

intervals as a practical tool under certain circumstances (Gelman et al. 2013; Stephens 2023). 

While addressing these limitations would increase considerably computational complexity, 

they represent key areas for future enhancement (Joint Committee for Guides in Metrology 2008, 2020). 

5.3. Case Study Shortcomings  
The case study’s main limitations include reliance on the OGTT as the reference method for 

diagnosing diabetes mellitus, despite several factors influencing glucose tolerance (Meneilly and Elliott 

1999; Geer and Shen 2009; Van Cauter, Polonsky, and Scheen 1997; Colberg et al. 2010; Salmerón et al. 

1997; Surwit et al. 2002; Pandit et al. 1993; Dupuis et al. 2010). Additionally, the lognormal distributions 

used only approximate the distributions of the FPG measurements from NHANES datasets, 

highlighting the need for more flexible statistical models. 

5.4. Challenges in Bayesian Analysis for Disease Diagnosis 
While Bayesian analysis may be beneficial in medical diagnostics, it presents certain challenges. 

For instance, the substantial uncertainty of the posterior probability for disease revealed in our study 

could lead to clinical indecision. Additionally, there is a notable lack of comprehensive statistical 

research on the distribution of measurands in both diseased and nondiseased populations, hindering 

further advancements in Bayesian analysis in this field. 

5.5. Implications of Incomplete Data 
1. Over-reliance on prior probabilities: Limited empirical data may cause an overdependence on prior 

probabilities, leading to distorted posterior probabilities and potentially flawed clinical decisions 

(O’Hagan et al. 2006). 

1. Increased uncertainty: Insufficient data amplifies the uncertainty of computed posterior 

probabilities, which in turn could exacerbate clinical indecision (Berger 1985). 

2. Bias risks: Unrepresentative datasets could introduce systemic bias, increasing the uncertainty in 

Bayesian computations (Gelman et al. 2013). 

5.6. Analysis of the Double Sigmoidal Curve in Posterior Probability 
Estimation and Its Impact on Uncertainty 

The posterior probability for disease curve, characterized by a double sigmoidal shape 

featuring two symmetrical sigmoid functions, presents compelling analytical perspectives in the field 

of medical diagnostic statistics. This configuration implies that the risk associated with the disease may 

escalate at both the lower and upper extremes of a given measurand, while a zone of relative safety 

exists in the intermediate range. Notably, the uncertainty associated with the posterior probability for 

disease becomes markedly pronounced along the steep segments of the double sigmoidal curve. This 

heightened uncertainty is attributable to the fact that minor variations in the measurand value can lead 

to significant alterations in the computed posterior probability. 

5.7. Software Comparison 
Our software easily generates a wide array of parametric plots and comprehensive tables for 

the analysis of posterior probability uncertainty. To the best of our knowledge, no software, including 

all major general or medical or Bayesian statistical and uncertainty quantification software packages 

(JASP® ver. 0.20.0, Mathematica® ver. 14.0, Matlab® ver. R2023b, MedCalc® ver. 20.2.1, metRology ver. 

2023, NCSS® ver. 24.0.0, NIST Uncertainty Machine ver. 2.0.0, OpenBUGS ver. 3.3.0, R ver. 4.3.1, SAS® 

ver. 9.5, SPSS® ver. 29, Stan ver. 2.33.0, Stata® ver. 19, and UQLab ver. 2.0.0) provides this range of plots 

and tables without advanced programming. 
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6. Conclusions 
The program we have developed represents a novel approach to estimating and analyzing the 

uncertainty of Bayesian posterior probabilities in disease diagnosis. This tool stands out not only for its 

innovative capabilities in the field of medical diagnostics but also as a significant educational and 

research asset. Considering the difficulties and complexities we have outlined, this software offers 

essential assistance in applying Bayesian methods and dealing with diagnostic uncertainties, thereby 

enhancing well-informed decision-making. 

Looking forward, it seems imperative that future research should focus on improving this 

method with advanced statistical concepts and empirically validating it with comprehensive test 

accuracy studies. Such studies are essential to verify the efficacy and reliability of the program in real 

clinical settings. Additionally, it is necessary to expand its application across a diverse range of 

diagnostic modalities. Doing so could enable the program to address a broader spectrum of diagnostic 

challenges, further enhancing its utility and impact in the medical field. 

Our research, undertaken alongside our prior work on the uncertainty of diagnostic accuracy 

measures (Chatzimichail and Hatjimihail 2021), creates a foundation for understanding uncertainties 

in diagnostic tests. With this consideration, we would recommend employing our approach in 

diagnostic accuracy research, aiming at formulating clear guidelines and establishing best practices to 

effectively integrate such information into clinical practice (J. Andre Knottnerus and Buntinx 2011; 

Whiting et al. 2013; Salameh et al. 2020; Schlattmann 2023).  

Regarding regulatory issues, it is necessary to ensure that the application of the software 

adheres to the standards set forth by local regulatory authorities.  

The potential of this program seems to be extending beyond its practical implications in 

medical diagnostics. As an educational resource, it could offer significant opportunities for training in 

medical statistics, particularly in the understanding of the uncertainty of Bayesian posterior 

probabilities. Its user-friendly interface, coupled with the depth of its analytical capabilities, makes it 

an effective learning tool for both aspiring and experienced professionals in the medical community. 

In conclusion, the development and refinement of the Bayesian Diagnostic Uncertainty 

program are pivotal steps towards navigating the complexities of modern medical diagnostics. Its role 

in enhancing Bayesian diagnostic methods, coupled with its educational benefits, highlights its 

capability as a supporting tool in the ongoing evolution of medical practice and research. 

Appendix A 
Appendix A.1. Formalisms and Notation 
Acronyms 

PDF: probability density function 

FPG: fasting plasma glucose 

OGTT: oral glucose tolerance test 

NHANES: National Health and Nutrition Examination Survey 

Notation 

Parameters 
𝑛𝐷: size of diseased population 

𝜇𝐷: mean of diseased population 

𝜎𝐷: standard deviation of diseased population 

𝑛�̅�: size of nondiseased population 

𝜇�̅�: mean of nondiseased population 

𝜎�̅�: standard deviation of nondiseased population 

𝑟: prior probability for disease (prevalence rate) 

𝑢𝑠(𝑥): standard sampling uncertainty of 𝑥 

𝑢𝑚(𝑥): standard measurement uncertainty of 𝑥 

𝑢𝑐(𝑥): standard combined uncertainty of 𝑥 

𝑛𝑈: number of quality control measurements 
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𝑏0: constant contribution to measurement uncertainty 

𝑏1: measurement uncertainty proportionality constant 

�̂�: mean standard measurement uncertainty 

𝑝: confidence level 

𝑣𝑒𝑓𝑓 : effective degrees of freedom 

Functions 
𝑃(𝐴): probability of the event A 

𝑃(𝐴|𝐵): conditional probability of the event A given the event B 

𝐿(𝜃|𝑧): likelihood function  

𝐹−1(. ): the inverse function F (. ) 

Bayes’ Theorem 
For the purposes of our study, Bayes’ theorem is formulated as: 

𝑃(𝐷|𝑇) =
𝑃(𝑇|𝐷)𝑃(𝐷)

𝑃(𝑇)
=

𝑃(𝑇|𝐷)𝑃(𝐷)

𝑃(𝑇|𝐷)𝑃(𝐷) + 𝑃(𝑇|�̅�)(1 − 𝑃(𝐷))
  

where 

𝑃(𝐷|𝑇) denotes the posterior probability of having a disease 𝐷 given a test result 𝑇. 

𝑃(𝑇|𝐷) denotes the likelihood of obtaining the result 𝑇 given the presence of the disease 𝐷. 

𝑃(𝑇|�̅�) denotes the likelihood of obtaining the result 𝑇 given the absence of the disease 𝐷. 

𝑃(𝐷) is the prior probability or prevalence 𝑟 of the disease 𝐷. 

𝑃(𝑇) is the overall probability of the result 𝑇. 

According to Bayes’ theorem, the posterior probability for a disease 𝐷 given a test result 𝑇 =

𝑥 and a parameter vector θ is calculated as:  

𝑃(𝐷|𝑇) =
𝐿𝐷(𝜽|𝑥)𝑟

𝐿𝐷(𝑥|𝜽)𝑟 + 𝐿�̅�(𝑥|𝜽)(1 − 𝑟)
=

𝑓𝐷(𝑥|𝜽)𝑟

𝑓𝐷(𝑥|𝜽)𝑟 + 𝑓�̅�(𝑥|𝜽)(1 − 𝑟)
  

where 𝑟  denotes the prior probability for disease, 𝐿𝐷(𝜽|𝑥)  and 𝑓𝐷(𝑥|𝜽)  denote the likelihood 

function and the PDF of the test measurand in the presence of the disease, respectively, while 

𝐿�̅�(𝑥|𝜽) and 𝑓�̅�(𝑥| 𝜽) are the respective functions in the absence of the disease. 

Appendix A.1.1. Parametric Distributions 
It is assumed that the test measurands of the diseased or nondiseased populations follow the 

normal, lognormal or gamma distribution. The domains of random variables for the respective 

distributions are defined as follows: 

1. The domain of a random variable X following a normal distribution is the set of all real 

numbers, denoting −∞ < 𝑋 < ∞. 

2. The domain of a random variable X following a lognormal distribution is the set of all 

positive real numbers, denoting 0 < 𝑋 < ∞. 

3. The domain of a random variable X following a gamma distribution is the set of all positive 

real numbers, denoting 0 < 𝑋 < ∞. 

Appendix A.1.2. Calculations of the Posterior Probability for Disease and Its 
Uncertainty 

These calculations are detailed in Supplementary File II (Refer to Supplementary Files). 

Appendix A.2. Software Availability and Requirements 
Program name: Bayesian Diagnostic Uncertainty 

Version: 1.0.1.5 

Project home page: https://www.hcsl.com/Tools/BayesianDiagnosticUncertainty/ (accessed on 4 

January 2024). Available at: 

https://www.hcsl.com/Tools/BayesianDiagnosticUncertainty/BayesianDiagnosticUncertainty.nb 

(accessed on 4 January 2024) 

Operating systems: Microsoft Windows 10+, Linux 3.15+, Apple macOS 11+  
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Programming language: Wolfram Language 

Other software requirements: 

For running the program and reading the BayesianDiagnosticUncertaintyCalculations.nb file 

Wolfram Player® ver. 12.0+ is required, freely available at: https://www.wolfram.com/player/ (accessed 

18 December 2023) or Wolfram Mathematica® ver. 12.0+ 

System requirements: Intel® i9™ or equivalent CPU and 32 GB of RAM 

License: Attribution—Noncommercial—ShareAlike 4.0 International Creative Commons License 

Appendix A.3. A Note about the Program 
About the Program Controls 

The program features an intuitive tabbed user interface, designed to streamline user interaction 

and facilitate effortless navigation across its multiple modules and sub-modules.  

The numerical settings are defined by the user with menus or sliders. Sliders can be finely 

manipulated by holding down the alt key or opt key while dragging the mouse. They be even more 

finely manipulated by also holding the shift and/or ctrl keys. 

Dragging with the mouse while pressing the ctrl, alt, or opt keys zooms plots in or out. 

Range of input parameters 
𝑥: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝜇�̅� − 5𝜎�̅� , 0) − 𝜇𝐷 + 5𝜎�̅� 
𝑛𝐷: 2–10,000 

𝜇𝐷: 0.1–10,000 

𝜎𝐷: 0.01–1000 

𝑛�̅�: 2–10,000 

𝜇�̅�: 0.1–10,000 

𝜎�̅� : 0.01–1000 

𝑟: 0.010–0.500 

𝑛𝑈: 20–10,000 

𝑏0: 0–𝜎�̅� 

𝑏1: 0–0.1 

𝑝: 0.900–0.999 

7.2. Appendix II: Software Availability and Requirements 
Program name: Bayesian Diagnostic Uncertainty 

Version: 1.0.5 

Project home page: https://www.hcsl.com/Tools/BayesianDiagnosticUncertainty/  (accessed 27 

September 2024).  

7.3. Appendix III: A Note about the Program 
About the program controls 

The program features an intuitive tabbed user interface, designed to streamline user 

interaction and facilitate effortless navigation across its multiple modules and sub-modules.  

The numerical settings are defined by the user with menus or sliders. Sliders can be finely 

manipulated by holding down the alt key or opt key while dragging the mouse. They be even more 

finely manipulated by also holding the shift and/or ctrl keys. 

Dragging with the mouse while pressing the ctrl, alt, or opt keys zooms plots in or out. 

Range of input parameters 
         𝑥: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝜇�̅� − 5𝜎�̅� , 0) − 𝜇𝐷 + 5𝜎�̅� 

𝑛𝐷 : 2 – 10,000 

𝜇𝐷: 0.1 – 10,000 

𝜎𝐷: 0.01 – 1,000 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.hcsl.com/Tools/BayesianDiagnosticUncertainty/
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𝑛�̅�: 2 – 10,000 

𝜇�̅�: 0.1 – 10,000 

𝜎�̅�: 0.01 – 1,000 

𝑟: 0.010 – 0.500 

𝑛𝑈: 20 – 10,000 

𝑏0 : 0  –  𝜎�̅� 

𝑏1: 0  –  0.1 

𝑝: 0.900 – 0.999 

8. Supplementary Files 
8.1 Supplementary File I 

BayesianDiagnosticUncertainty.nb: The program as a Wolfram Mathematica Notebook. 

Available at 

https://www.hcsl.com/Tools/BayesianDiagnosticUncertainty/BayesianDiagnosticUncertainty.nb 

 8.2 Supplementary File II 
BayesianUncertaintyCalculations.nb: The calculations for the estimation Bayesian posterior 

probability for disease and its standard uncertainty, in a Wolfram Mathematica Notebook. Available 

at https://www.hcsl.com/Supplements/ SBDU.zip 

 8.3 Supplementary File III 
BayesianDiagnosticUncertaintyInterface.pdf: A brief description of the interface of the program. 

Available at: https://www.hcsl.com/Documents/BayesianDiagnosticUncertaintyInterface.pdf  

9. Statements 
9.1 Institutional Review Board Statement 

Data collection was carried out following the rules of the Declaration of Helsinki. The Ethics 

Review Board of the National Center for Health Statistics approved data collection and posting the 

data online for public use. National Center for Health Statistics NHANES—NCHS Research Ethics 

Review Board Approval (Protocols #2005-06 and #2011-17), available online at: 

https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 20 December 2023). 

 

9.2 Informed Consent Statement 
Written consent was obtained from each subject participating in the survey. 

9.3 Data Availability Statement 
  The data presented in this study are available at 

https://wwwn.cdc.gov/nchs/nhanes/default.aspx (Accessed at 20/12/2023). 

9.4 Conflicts of Interest  
The authors declare no conflict of interest. 
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