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Abstract 
Medical diagnosis is the basis for treatment and management decisions in healthcare. Conventional 

methods for medical diagnosis commonly use established clinical criteria and fixed numerical 

thresholds. The limitations of such an approach may result in a failure to capture the intricate 

relations between diagnostic tests and the varying prevalence of diseases. To explore this further, 

we have developed a freely available specialized computational tool that employs Bayesian 

inference to calculate the posterior probability of disease diagnosis. This novel software comprises 

of three distinct modules, each designed to allow users to define and compare parametric and 

nonparametric distributions effectively. The tool is equipped to analyze datasets generated from 

two separate diagnostic tests, each performed on both diseased and nondiseased populations. We 

demonstrate the utility of this software by analyzing fasting plasma glucose and glycated 

hemoglobin A1c data from the National Health and Nutrition Examination Survey. Our results are 

validated using the oral glucose tolerance test as a reference standard, and we explore both 

parametric and nonparametric distribution models for the Bayesian diagnosis of diabetes mellitus. 
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Introduction 

Medical diagnosis is a critical process of accurately identifying pathological conditions in patients. 

The term "diagnosis" has its etymological origins in the ancient Greek word "διάγνωσις", signifying 

'discernment' (Weiner, Simpson, and Oxford University Press 1989). Traditionally, diagnostic tests 

are used to divide individuals into two principal categories: those who are afflicted with a specific 

disease and those who are not. Notably, the probability distributions associated with quantitative 

diagnostic test outcomes often demonstrate some overlap between the diseased and nondiseased 

groups. To address this, numerical diagnostic thresholds or cut-off points have been formulated to 

provide a binary classification of these test outcomes (Zweig and Campbell 1993). Nevertheless, this 

introduces a certain measure of uncertainty into the diagnostic accuracy of those tests 

(Chatzimichail and Hatjimihail 2021). This dichotomous method represents a significant shift in 

medical decision-making by linking a continuum of evidence to binary clinical decisions such as to 

treat or not to treat (Djulbegovic et al. 2015). 

Despite the evident efficiency of traditional diagnostic methods, they sometimes fail to capture the 

complexity and heterogeneity of disease presentations across diverse populations (Choi, Johnson, 

and Thurmond 2006). To address these limitations, our research focuses on implementing Bayesian 

inference to calculate the posterior probabilities associated with disease diagnosis (Viana and 

Ramakrishnan 1992; Gelman et al. 2013; van de Schoot et al. 2021; Bours 2021). Within this 

Bayesian paradigm, prior probabilities of disease are integrated with distributions of diagnostic 

measurands in both diseased and nondiseased populations. This approach enables the evaluation of 

the information conveyed by diagnostic measurements and combination of data from multiple 

diagnostic tests, which may improve diagnostic accuracy and precision while introducing flexibility, 

adaptability, and versatility into the diagnostic process (Carlin and Louis 2008). Furthermore, the 

Bayesian approach extends its utility beyond the medical field by offering a robust framework for 

quantifying uncertainty in various domains, thereby enriching its applicability in both diagnostic and 

prognostic contexts (Martin et al. 2023; Liu, Liu, and Wong 2013). 

A considerable challenge in integrating Bayesian inference into medical diagnosis is the limited 

availability of literature detailing the statistical distributions of diagnostic variables in both 

pathological and non-pathological states (Dawid 1984).  

The ubiquitous application of the normal distribution in clinical laboratory indicators is due, in part, 

to its mathematical simplicity, the foundational Central Limit Theorem, and a rich collection of 

statistical methods designed for Gaussian data (Lehmann and Romano 2008). However, the universal 

applicability of the normal distribution is subject to critique, especially when dealing with clinical 

measurands that exhibit skewness, bimodality, or multimodality (G. E. P. Box and Cox 1964). Hence, 

while the normal distribution remains invaluable in statistical modeling, critical evaluation of its 

appropriateness for specific diagnostic measurands is necessary. This evaluation should be 

accompanied by an openness to adopt alternative statistical distributions when needed (D’Agostino 

and Pearson 1973). 

This foundational data is crucial for Bayesian inference, establishing the essential context against 

which new diagnostic measurements can be compared. The absence of such normative data could 

potentially compromise the reliability and validity of Bayesian diagnostic methods. 
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To address the complex issues related to Bayesian diagnosis and the selection of appropriate 

statistical distributions for diagnostic variables, we have developed Bayesian Diagnosis, an 

interactive software tool programmed in the Wolfram Language. This tool allows users to explore 

and compare both parametric and nonparametric distributions to calculate posterior probabilities 

for disease. It is designed to analyze datasets of measurements of two distinct diagnostic tests, 

performed on both diseased and nondiseased populations. 

Methods 

The Program 
Bayesian Diagnosis was developed using Wolfram Mathematica® Ver. 13.31. This interactive 

program consists of three primary modules with eighteen submodules. It allows the calculation, 

plotting and comparison of Bayesian posterior probability of disease for two diagnostic tests, 

assuming two sets of alternative parametric and nonparametric distributions of the measurements 

of those tests in diseased and nondiseased populations. It is freely available as a Wolfram 

Mathematica Notebook (.nb) (Supplementary File: BayesianDiagnosis.nb). It can be run on Wolfram 

Player® or Wolfram Mathematica® (see Appendix II). 

Datasets 
Although the program includes four datasets of measurements, one for each diagnostic test, applied 

to a diseased and a nondiseased population, these can be replaced by other appropriate datasets 

selected by the user (see Appendix II). Therefore, it can be used for any combination of diagnostic 

tests and diseases. 

Computational Methods 

Bayesian Diagnostic Approach 
The Bayesian diagnostic approach is a cornerstone in statistical inference and particularly useful in 

medical diagnosis (Viana and Ramakrishnan 1992; Velanovich 1994; Wilkes 2022).The approach 

relies on Bayes' theorem (Gelman et al. 2013). For effective implementation of the Bayesian 

diagnostic method, knowledge concerning the statistical distributions of the measurements of the 

diagnostic tests is essential (Lehmann and Romano 2008). 

Bayes Theorem is presented in Appendix I. 

Parametric Distributions 
Parametric statistics assume that dataset data comes from a population that can be adequately 

modeled by a probability distribution that has a fixed set of parameters (Geisser and Johnson 2006). 

The parametric distributions provided by the program are the following: 

1. Normal Distribution 

1.1. Univariate 

1.2. Bivariate 

2. Lognormal Distribution 

2.1. Univariate 

2.2. Bivariate 

3. Gamma Distribution 

3.1. Univariate 

 
1 Wolfram Research, Inc., Mathematica, Version 13.3, Champaign, IL (2023). 
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3.2. Bivariate 

4. Copula Distributions 

The copula distributions of the program are bivariate, with a bivariate normal distribution with 

correlation ρ as kernel, and univariate normal, lognormal and gamma marginals. 

The probability density functions (PDFs) of the parametric distributions are mathematically defined 

in Appendix I. 

Nonparametric Distributions 

Conversely, nonparametric models were also employed, which do not make a priori assumptions 

about the distribution's mathematical form (Spiegelhalter, Abrams, and Myles 2004). These are 

particularly useful for exploratory data analysis and are implemented as shown in Appendix I. 

Histograms 

A histogram is the graphical representation of the distribution of a dataset as a series of bins. 

The program plots histograms of the provided datasets. 

Kernel Density Estimators  

In contrast to histograms, a kernel density estimator (KDE) generates a continuous and smooth 

estimate of the underlying PDF by summing the contributions of kernel functions centered at each 

data point. 

The KDE offers a flexible nonparametric approach to density estimation, allowing for a better 

representation of the data's underlying distribution. 

The program provides univariate and bivariate Gaussian KDE. The bivariate KDE use radial-type 

kernels.  

Interface of the Program 
The program is designed with an intuitive user interface, constructed to allow users to input and 

modify various prior probability and measurement parameters and to select parametric distributions 

and Kernel Density Estimators (KDE) related to medical diagnosis (see Appendix III and 

Supplementary File: BayesianDiagnosisInterface.pdf). 

Input Parameters 

Prior Probability 

The user initiates the diagnostic evaluation by specifying the prior probability of disease occurrence 

in the population under study. This serves as a foundational metric for subsequent analyses. 

Parametric Distributions 

To facilitate a diagnostic model, the program allows for the definition of various parametric 

distributions for both the diseased and nondiseased populations across two diagnostic tests. 

1. Distribution Selection: The user selects the type of distribution from a predefined list: 

1.1. Normal Distribution 

1.2. Lognormal Distribution 

1.3. Gamma Distribution 

2. Statistical Parameters: For each chosen distribution, the user defines the mean μ and standard 

deviation σ of the measurand in the respective population. 
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3. Correlation Coefficients: The user specifies the correlation coefficients ρ between the 

measurands of the first and second diagnostic tests for both diseased and nondiseased 

populations. 

Kernel Density Estimators 

Alternatively, the user can opt to define the KDE for the measurands in both diseased and 

nondiseased populations across the two tests: 

1. Bandwidth Parameter: For each KDE, the user defines the bandwidth parameter ℎ. 

2. Correlation Coefficients: As with parametric distributions, the user defines correlation 

coefficients ρ between the measurands of the two diagnostic tests. 

Output Specifications 

Visualizations 

The program generates a series of plots designed to elucidate various diagnostic metrics and 

statistics: 

1. Posterior Probability of Disease: Plots are generated to show the posterior probability of disease 

for each measurand and their combination. 

2. PDF: Univariate PDF for each measurand and the bivariate PDF of their combination are plotted. 

An option to overlay histograms on these plots is also provided. 

3. Quantile-Quantile (Q-Q) Plots: These plots are produced for each measurand to examine its 

distributional characteristics (Wilk and Gnanadesikan 1968). 

4. Probability-Probability (P-P) Plots: Similar to Q-Q plots, P-P plots are generated for further 

assessment of the distribution of each measurand (Wilk and Gnanadesikan 1968). 

Tables 

1. Population Statistics: The program tabulates key statistical metrics such as mean, median, 

standard deviation, skewness, and kurtosis for each user-defined distribution and dataset. For 

each bivariate distribution of the two measurands in diseased and nondiseased populations, the 

correlation coefficients are calculated and displayed. 

2. Posterior Disease Probabilities: For a user-defined pair of test measurement values, the program 

computes and presents the posterior probabilities for disease for each measurand and their 

combination. 

By providing this comprehensive set of input parameters and output specifications, the program 

offers a robust platform for exploring the Bayesian diagnosis of disease using either parametric 

distributions or KDE of medical diagnostic measurands. 

Illustrative Application 
To demonstrate the application of the program, fasting plasma glucose (FPG) was used as the first 

measurand and glycated hemoglobin A1c (HbA1c) as the second measurand for Bayesian diagnosis 

of diabetes mellitus. The oral glucose tolerance test (OGTT) was used as the reference diagnostic 

method. A diagnosis of diabetes was confirmed if the plasma glucose value was equal to or exceeded 

200 mg/dl, measured two hours after oral administration of 75 g of glucose (ElSayed et al. 2023), 

during an OGTT (2-h PG). It is noteworthy that the study population was confined to individuals aged 

between 40 and 60 years, a decision informed by the well-documented strong correlation between 

age and the prevalence of diabetes (Sun et al. 2022). 

National Health and Nutrition Examination Survey (NHANES) data from participants was retrieved 

for the period from 2005 to 2016 (National Center for Health Statistics 2005-20016) (n = 60,936). 
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NHANES is a series of studies designed to evaluate the health and nutritional status of adults and 

children in the United States.  

 The inclusion criteria for participants were: 

1. Age 40 – 60 years (n = 11,782) 

2. Valid fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), and oral glucose tolerance 

test (OGTT) results (n=4,015) 

3. A negative response to NHANES question DIQ010 regarding a diabetes diagnosis (National 

Center for Health Statistics 2005-20016) (n=3,854)  

4. Non-pregnancy status (n=3,854) 

Participants with a 2-h PG measurement of ≥ 200 mg/dl were considered diabetic (n = 211). 

Descriptive statistics, including the mean, median, and standard deviation, were computed for each 

dataset. Univariate distributions were employed to model the distributions of FPG and HbA1c and 

bivariate distributions to model the joint distribution of FPG and HbA1c. Likelihoods and posterior 

probabilities were estimated for FPG, HbA1c and their combinations. 

The prior probability of diabetes was estimated as  

𝑣 =
211

3,854
= 0.055. 

The statistics of the dataset are presented in Table 1. 

 Diabetic Patients Nondiabetic Patients 

n 687 10519 

Measurand (Units) FPG (mg/dl) HbA1c (%) FPG (mg/dl) HbA1c (%) 

Mean 141.3 6.67 99.9 5.47 

Median 124.0 6.30 99.0 5.50 

Standard Deviation 54.0 1.57 10.1 0.38 

Skewness 2.375 2.201 0.576 - 0.058 

Kurtosis 9.037 8.377 4.213 3.615 

Correlation Coefficient 0.914 0.320 

Table 1: The descriptive statistics of FPG and HbA1c datasets.  
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Results 
Using the settings of Table 2, the program generated the plots of Figures 1-11 and the tables of 

Figures 12-13. 

 Diabetic Patients Nondiabetic Patients 

Measurand (Units) FPG (mg/dl) HbA1c (%) FPG (mg/dl) HbA1c (%) 

Parametric Distribution Lognormal Lognormal Lognormal Lognormal 

Parametric Distribution Mean 141.3 6.67 99.9 5.47 

Parametric Distribution SD 54.0 1.57 10.1 0.38 

KDE Smoothing Bandwidth (SD units) 0.32 0.34 0.34 0.35 

Correlation Coefficient 0.914 0.320 

Table 2: The settings of the program for Figures 1-13. 

The KDE smoothing bandwidth was set to double that given by Silverman’s rule of thumb (Menke et 

al. 2014; Silverman 1986). 

 

Figure 1: Posterior probability of disease (diabetes) versus the first measurand (FPG), assuming 

parametric and KDE distributions of the measurand, with the settings of the program in Table 2. 
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Figure 2: Posterior probability of disease (diabetes) versus the second measurand (HbA1c), assuming 

parametric and KDE distributions of the measurand, with the settings of the program in Table 2. 
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Figure 3: Posterior probability of disease (diabetes) versus both measurands (FPG and HbA1c), 

assuming parametric and KDE distributions of the measurands, with the settings of the program in 

Table 2. 
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Figure 4: The PDF of the first measurand (FPG) in diseased (diabetic patients), assuming parametric 

and KDE distributions of the measurand, and the histogram of the respective dataset (NHANES 

dataset), with the settings of the program in Table 2. 

 

Figure 5: The PDF of the first measurand (FPG) in nondiseased (nondiabetic patients), assuming 

parametric and KDE distributions of the measurand, and the histogram of the respective dataset 

(NHANES dataset), with the settings of the program in Table 2. 
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Figure 6: The PDF of the second measurand (HbA1c) in diseased (diabetic patients), assuming 

parametric and KDE distributions of the measurand, and the histogram of the respective dataset 

(NHANES dataset), with the settings of the program in Table 2. 

 

Figure 7: The PDF of the second measurand (HbA1c) in nondiseased (nondiabetic patients), assuming 

parametric and KDE distributions of the measurand, and the histogram of the respective dataset 

(NHANES dataset), with the settings of the program in Table 2. 
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Figure 8: The Q-Q plot of the first measurand (FPG) in diseased (diabetic patients) versus the 

respective dataset (NHANES dataset), assuming parametric and KDE distributions of the measurand, 

with the settings of the program in Table 2. 

 

Figure 9: The Q-Q plot of the first measurand (FPG) in nondiseased (nondiabetic patients) versus the 

respective dataset (NHANES dataset), assuming parametric and KDE distributions of the measurand, 

with the settings of the program in Table 2. 
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Figure 10: The Q-Q plot of the second measurand (HbA1c) in diseased (diabetic patients) versus the 

respective dataset (NHANES dataset), assuming parametric and KDE distributions of the measurand, 

with the settings of the program in Table 2. 

 

Figure 11: The Q-Q plot of the second measurand (HbA1c) in nondiseased (nondiabetic patients) 

versus the respective dataset (NHANES dataset), assuming parametric and KDE distributions of the 

measurand, with the settings of the program in Table 2. 
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Figure 12: The descriptive statistics of the distributions of the measurands (FPG and HbA1c) in 

diseased (diabetic patients) and nondiseased (nondiabetic patients), assuming parametric and KDE 

distributions, and of the respective datasets (NHANES datasets), with the settings of the program in 

Table 2. 

 

Figure 13: The prior and posterior probabilities of disease (diabetes) for values of the first 

measurand (FPG) equal to 126 mg/dl and of the second measurand (HbA1c) equal to 6.5 %, 

assuming parametric and KDE distributions, with the settings of the program in Table 2. 

Figures 1-2 show the plots of the posterior probability of diabetes versus FPG and HbA1c, 

respectively. The curves of the parametric distributions are smooth double sigmoidal, while the 

curves of the nonparametric distributions are multimodal. 
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Figure 3 shows the plot of the posterior probability of diabetes versus FPG and HbA1c combined. 

The surface of the parametric distribution is smooth, while the surface of the nonparametric 

distribution is multimodal. 

Figures 4-7 show the PDF of FPG and HbA1c in diabetic and nondiabetic patients and the histograms 

of the respective NHANES datasets. It is visually evident that the nonparametric distributions fit the 

datasets better, especially in diabetic patients. 

Figures 8-11 show the Q-Q plots of the PDF of FPG and HbA1c in diabetic and nondiabetic patients 

versus the respective NHANES datasets. The plots show clearly that the nonparametric distributions 

fit the datasets better, especially in diabetic patients. 

Figure 12 shows a table with the descriptive statistics of FPG and HbA1c in diabetic patients and 

nondiabetic patients, assuming parametric and KDE distributions, and of the respective NHANES 

datasets. The data, including the loglikehood values, support the hypothesis that the nonparametric 

distributions fit the datasets better, especially in diabetic patients. 

Figure 13 shows a table of prior and posterior probabilities for diabetes for values of FPG equal to 

126 mg/dl and of HbA1c equal to 6.5 %, the established thresholds of the two measurands for the 

diagnosis of diabetes (ElSayed et al. 2023), assuming parametric and KDE distributions.  

Discussion 

Reevaluation of Traditional Diagnostic Methods 
The findings of the present study highlight the importance of considering incorporating Bayesian 

methods in medical diagnosis and management. Conventional approaches based on rigid diagnostic 

criteria, are often unable to account for the intricate relationships between disease pathology and 

diagnostic procedures and therefore offer a personalized patient approach (Obermeyer and 

Emanuel 2016). In stark contrast, Bayesian methodologies offer a framework that enhances 

diagnostic precision through a more comprehensive probabilistic assessment (Choi, Johnson, and 

Thurmond 2006). This Bayesian foundation, therefore, serves as an enabler for tailored medical 

interventions, echoing similar arguments in existing literature advocating for individualized medicine 

(Topol 2014). 

Even though the KDE from our illustrative application, as parameterized in Table 2, provide only an 

approximate fit to the NHANES datasets for FPG and HbA1c measurements, the posterior 

probabilities for diabetes delineated in Figure 13 suggest a limited concordance between the 

classification criteria of diabetes derived from the OGTT, HbA1c, and FPG tests, as found previously 

in existing literature (Tucker 2020). 

Challenges and Considerations in Bayesian Analysis for Disease Diagnosis 
Despite the evident merits of Bayesian analytics in medical diagnostics, it is paramount to address 

the intrinsic challenges associated with this methodological shift. One such issue resides in the 

limited availability of scholarly publications that provide a comprehensive statistical exploration of 

the measurands in both the diseased and nondiseased populations (Smith and Gelfand 1992). 

Ramifications of Incomplete Information: 
1. Over-dependence on Prior Probabilities: The scarcity of empirically derived distributions 

amplifies reliance on prior probabilities, thereby inducing distortions in the calculation of 

posterior probabilities. This can result in suboptimal clinical judgments and potentially 

inaccurate diagnoses (O’Hagan et al. 2006). 
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2. Elevated Uncertainty Insufficient data contributes to broader confidence intervals in the 

computed posterior probabilities, which, in turn, exacerbates clinical indecisiveness (Berger 

1985). 

3. Risk of Bias: The introduction of systemic bias due to unrepresentative data sets can 

compromise the fidelity of Bayesian calculations (Gelman et al. 2013). 

4. Imperative for Collaborative Research: More coordinated research is needed, including multi-

center studies, meta-analyses, and open-access databases—to accumulate and disseminate data 

essential for effective Bayesian diagnostis (McGrayne 2011). 

5. Exploration of Alternative Methodologies: Given the lack of comprehensive data, the utility of 

combining Bayesian methods with other statistical and computational techniques or diagnostic 

modalities becomes increasingly pertinent (George E. P. Box and Tiao 2011; Tamrakar, Choubey, 

and Choubey 2023). 

Parametric Versus Nonparametric Bayesian Models 
In the context of diagnosing diabetes mellitus through FPG and HbA1c levels, our computational tool 

revealed that nonparametric Bayesian models typically produce a better fit to data distributions, 

corroborating existing literature that emphasizes the robustness of nonparametric techniques in 

capturing complex data distributions (Menke et al. 2014; Wasserman 2006). 

Multimodal Versus Double Sigmoidal Bayesian Probability of Disease Curve 
The nonparametric Bayesian probabilities for disease exhibited multimodal patterns, in contrast to 

the bimodal, double sigmoidal curves generated by parametric models.  

Multimodal Curve 

Potential Causes: 

1. Complex Pathophysiology: Multiple etiological pathways may influence the same measurand in 

divergent ranges, adding layers of complexity to diagnostic processes (Dawid 1984). 

2. Diagnostic Confounders: External variables affecting the measurand could compromise its 

efficacy as a standalone diagnostic criterion (Pearl 1994). 

3. Population Subgroups: The existence of demographically or genetically distinct subgroups within 

the studied population could also account for the observed multimodality (Heckerman et al., 

1995). 

4. Statistical Artifacts: Demographically or genetically distinct subgroups may be a factor 

contributing to observed multimodal distributions (Heckerman, Geiger, and Chickering 1995). 

Theoretical Implications: 

Multimodal distributions present a clinical conundrum, compelling healthcare providers to 

potentially employ additional diagnostic tests or even alternative methodologies (Dawid 1984). 

Double Sigmoidal Curve 

A curve composed of two mirrored sigmoid functions, one delineating the probability behavior for 

lower measurand values and the other for higher values—offers a fascinating nuance in the realm of 

diagnostic statistics and medical decision-making. 

Interpretation 

1. Two Zones of Risk: Such a curve suggests that the risk of the disease is heightened both at low 

and high extremes of the measurand but reduced in a middle "safe zone." 

2. Multifactorial Etiology: This might reflect a situation where both deficiency and excess of a 

particular biological factor contribute to disease risk. For example, both low and elevated levels 

of hormones could be problematic. 
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Clinical and Diagnostic Implications 

1. Threshold Decision-making: Unlike a single sigmoid curve, where one threshold may be 

adequate for diagnosis, the double-sigmoid may necessitate multiple thresholds, defining a "safe 

zone" for the measurand. 

2. Treatment Strategies: Clinicians must be cautious when intervening based on such a measurand, 

as moving the measurand too far in either direction could heighten risk. 

3. Population Stratification: This curve shape might imply that different sub-populations or disease 

subtypes could be better distinguished by additional tests or measurements. 

Shortcomings of this study 
The main shortcomings of this study were the following: 

1. The OGTT was used as reference diagnostic method for diabetes mellitus. The diagnostic 

threshold for 2-h PG was established in relation to the risk of diabetic retinopathy, a 

microvascular complication of diabetes mellitus (American Diabetes Association, 2021). 

However, glucose tolerance is influenced by complex interactions of factors, both physiological 

and environmental, which pose significant implications for clinical diagnosis and research. The 

considerations that could affect glucose tolerance and, therefore, the interpretation of the 2-h 

PG measurement, include the following: 

1.1. Age and Gender 

Age and gender are significant variables in glucose tolerance. Insulin sensitivity often 

decreases with age, resulting in higher PG levels (Meneilly and Elliott 1999). Gender 

differences, particularly related to hormonal changes in females, could also affect glucose 

metabolism (Geer and Shen 2009). 

1.2. Diurnal Variability 

Glucose tolerance is subject to diurnal variation, which could affect the 2-h PG test 

outcomes. Insulin sensitivity is generally higher in the morning than in the evening (Van 

Cauter, Polonsky, and Scheen 1997). 

1.3. Physical Activity 

Exercise improves insulin sensitivity and therefore could affect glucose tolerance tests. The 

timing and intensity of physical activity could have a direct influence on the 2-h PG results 

(Colberg et al. 2010). 

1.4. Dietary Patterns 

Short-term and long-term dietary habits, including the macronutrient composition of the 

diet, may alter the body's glucose and insulin response (Salmerón et al. 1997). 

1.5. Stress and Emotional States 

The acute stress response includes a transient rise in glucose levels as a result of 

catecholamine release, potentially affecting the 2-h PG test (Surwit et al. 2002). 

1.6. Medications 

Certain medications like corticosteroids, antipsychotics, and diuretics  affect glucose 

metabolism, thereby influencing 2-h PG test outcomes (Pandit et al. 1993). 

1.7. Genetic Factors 

Genetic predispositions influence glucose tolerance, and not accounting for this  introduce 

variability in the 2-h PG test (Dupuis et al. 2010). 

2. The lognormal distributions and the KDE, as parameterized in Table 2, fitted only approximately 

to the NHANES datasets of FPG and HbA1c measurements. It is well known that biological 

measurands, such as FPG and HbA1c, do not always follow textbook statistical distributions like 
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normal or lognormal distributions. Numerous papers have noted the skewness or kurtosis in the 

distribution of metabolic variables, urging the use of flexible statistical models (Haeckel, 

Wosniok, and Arzideh 2007; Arzideh et al. 2007).  

Related Statistical Software 
All major general or Bayesian statistical software packages (BUGS, JASP®, Matlab®, NCSS®, R, SAS®, 

SPSS®, Stan and Stata®), include routines for Bayesian inference. The program presented in this work 

provides 29 different types of parametric and nonparametric plots. None of the above-mentioned 

programs provide this range of plots without advanced statistical programming. 

Conclusion and Future Directions 

The intricacies of the double-sigmoid curve and multimodal distributions introduce a new frontier in 

personalizing healthcare provision. While smoother relationships between measurements and 

Bayesian probability facilitate clinical interpretability, multimodal distributions might serve as 

sentinel indicators of underlying complexities or methodological shortcomings, thus providing a 

useful tool in the field of medical diagnosis. 

As a pivotal next step, future research should aim to validate the utility and reliability of the Bayesian 

inference based method applied in this study through real-world clinical trials, in addition to 

extending its application to include more diagnostic modalities. The aim is to combine this approach 

with existing clinical protocols, thereby optimizing the diagnostic precision and consequently 

improving patient outcomes.  

In addition to its potential for clinical applications, the computational tool developed for this study 

could hold considerable promise as an educational and research adjunct. By facilitating the analysis 

of Bayesian probabilities in disease diagnosis, it serves as an invaluable resource for both medical 

practitioners in training and experienced researchers in the field. Its modular design and user-

friendly interface make it easily adaptable to various research settings and educational curricula, 

thereby accelerating the adoption and dissemination of Bayesian approaches in medical statistics 

and diagnostics. 
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Appendix I 

Formalisms and Notation 

Abbreviations 
PDF: probability density function 

CDF: cumulative distribution function 

KDE: kernel density estimator 

OGTT: oral glucose tolerance test 

PG: plasma glucose  

2-h PG: plasma glucose, measured two hours after oral administration of 75 g of glucose, during an 

OGTT 

FPG: fasting plasma glucose 

HbA1c: glycated hemoglobin A1c 

NHANES: National Health and Nutrition Examination Survey  

Tuples 
x: an n-tuple (𝑥1, 𝑥2, … , 𝑥𝑛)  

Parameters 
v : prevalence of disease 

https://wwwn.cdc.gov/nchs/nhanes/default.aspx
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μ, m : mean 

σ, s : standard deviation 

ρ, r : correlation coefficient 

k : shape parameter 

𝜗 : scale parameter 

h : nonparametric kernel density bandwidth 

Functions 
𝑓−1: the inverse of the function 𝑓  

|𝐻|: determinant of the matrix H 

𝑃(𝐴): probability of the event A 

𝑃(𝐴|𝐵): conditional probability of the event A given the event B 

𝑐𝑜𝑣(𝑋, 𝑌): covariance of two jointly distributed random variables 𝑋 and 𝑌 

𝔼[𝑍]: expected value of a random variable 𝑍 

𝑙𝑛(𝑥) : natural logarithm 

ℒ(𝛉|𝑧): likelihood function of the parameter θ given the observed value z of the random variable Z 

ℒ(𝜽|𝐳): likelihood function of the parameter θ given the observed values z of the random variable Z 

𝑙(𝛉|𝑧): loglikelihood function of the parameter θ given the observed value z of the random variable 

Z 

𝑙(𝛉|𝐳): loglikelihood function of the parameter θ given the observed values z of the random variable 

Z 

𝑝(𝑥): probability mass function of a discrete variable X 

𝑃𝑄(𝑘; 𝑞): the k-th q-quantile of a random variable 

𝑒𝑟𝑓(𝑧): error function 

𝑒𝑟𝑓𝑐(𝑧): complementary error function 

𝛤(𝑧): gamma function 

𝛾(𝑧, 𝑥): incomplete gamma function 

𝑄(𝑎, 𝑧): regularized incomplete gamma function 

𝛾(𝑧, 𝑥0, 𝑥1): generalized incomplete gamma function 

𝑄(𝑧, 𝑥0, 𝑥1): regularized generalized incomplete gamma function 

𝐾(𝑢): kernel function 

𝑓(𝑥): univariate PDF 

𝑓(𝑥|𝜽): univariate PDF with parameter vector θ 
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𝑓(𝑥, 𝑦): bivariate PDF 

𝑓(𝑥; 𝛉), 𝑓(𝑥|𝛉): univariate PDF given the multivariate parameter θ 

𝑓(𝑥, 𝑦): bivariate PDF 

𝑓(𝑥, 𝑦; 𝛉), 𝑓(𝑥, 𝑦|𝛉): bivariate PDF given the multivariate parameter θ 

𝐹(𝑥): univariate CDF 

𝐹(𝑥; 𝛉), 𝐹(𝑥|𝛉): univariate CDF given the multivariate parameter θ 

𝐹(𝑥, 𝑦): bivariate CDF 

𝐹(𝑥, 𝑦; 𝛉), 𝐹(𝑥, 𝑦|𝛉): bivariate CDF given the multivariate parameter θ 

Definitions of Functions 

Inverse Function 
The inverse function 𝑓−1 of a function 𝑓 (also called the inverse of 𝑓) is a function that undoes the 

operation of 𝑓. Therefore: 

𝑓−1(𝑓(𝑥)) = 𝑥 

and 

𝑓(𝑓−1(𝑦)) = 𝑦 

 

Natural Logarithm 

l n(𝑥) = ∫
1

𝑡
𝑑𝑡

𝑥

1

 

Error Function 

𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0

 

Complementary Error Function 
𝑒𝑟𝑓𝑐(𝑥) = 1 − 𝑒𝑟𝑓(𝑥) 

Gamma Function 

𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0

 

for all complex numbers z, except the non-positive integers. 

Incomplete Gamma Function 

𝛾(𝑧, 𝑥) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

𝑥

 

Regularized Incomplete Gamma Function 

𝑄(𝑧, 𝑥) =
𝛾(𝑧, 𝑥)

𝛤(𝑧)
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Generalized Incomplete Gamma Function 

𝛾(𝑧, 𝑥0, 𝑥1) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
𝑥1

𝑥0

 

Regularized Generalized Incomplete Gamma Function 

𝑄(𝑧, 𝑥0, 𝑥1) =
𝛾(𝑧, 𝑥0, 𝑥1)

𝛤(𝑧)
 

Probability Density Function 

Univariate 
The probability density function (PDF) is a statistical function that describes the likelihood of a 

continuous random variable taking on a particular value.  

For a continuous random variable 𝑋, the PDF, denoted by 𝑓(𝑥), is defined as: 

𝑓(𝑥) = lim
𝛥𝑥→0

𝑃(𝑥 ≤ 𝑋 < 𝑥 + 𝛥𝑥)

𝛥𝑥
 

where 𝑃(𝑥 ≤ 𝑋 < 𝑥 + 𝛥𝑥) is the probability that the random variable 𝑋 falls within the interval 

[𝑥, 𝑥 + 𝛥𝑥) 

Bivariate 
The bivariate PDF is a statistical measure that describes the likelihood of two continuous random 

variables X and Y, taking on values x and y. It is denoted as 𝑓𝑋,𝑌(𝑥, 𝑦) and defined as:  

𝑓𝑋,𝑌(𝑥, 𝑦)  = lim
𝛥𝑥,𝛥𝑦→0

𝑃(𝑥 ≤ 𝑋 < 𝑥 + 𝛥𝑥, 𝑦 ≤ 𝑌 < 𝑦 + 𝛥𝑦)

𝛥𝑥𝛥𝑦
 

where 𝑃(𝑥 ≤ 𝑋 < 𝑥 + 𝛥𝑥, 𝑦 ≤ 𝑌 < 𝑦 + 𝛥𝑦) is the probability that the random variables X and Y fall 

within the intervals [𝑥, 𝑥 + 𝛥𝑥) and  [𝑦, 𝑦 + 𝛥𝑦) respectively. 

Cumulative Distribution Function  

Univariate 
The univariate cumulative distribution function (CDF) is closely related to the PDF and provides the 

cumulative probability for a random variable up to a specific value. 

For a random variable 𝑋, the CDF, denoted by 𝐹(𝑥), is defined as: 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−∞

 

where 𝑓(𝑡) is the PDF of the random variable. 

The CDF is the integral of the PDF, and conversely, the PDF is the derivative of the CDF (when it 

exists):  

𝑓(𝑥) =
𝑑𝐹(𝑥)

𝑑𝑥
 

Bivariate 
The bivariate CDF is a function that describes the probability that the random variables X and Y 
simultaneously take on values less than or equal to x and y, respectively. It is denoted as 𝐹𝑋,𝑌(𝑥, 𝑦) 

and defined as:  
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𝐹𝑋,𝑌(𝑥, 𝑦) = ∫ ∫ 𝑓𝑋,𝑌(𝑢, 𝑣) 𝑑𝑢
𝑦

−∞

𝑥

−∞

𝑑𝑣 

Skewness 
Skewness is a statistical measure that describes the asymmetry of a probability distribution about its 

mean. It quantifies the extent and direction of skew (departure from horizontal symmetry) in the 

data. 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) =
𝔼[(𝛸 − 𝜇)3]

𝜎3
 

where X is a random variable and μ and σ are the mean and the standard deviation of X.  

If 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) < 0, the distribution is said to be left-skewed. If 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) > 0, is said to be 

right-skewed. If 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) = 0, the distribution is symmetric. 

Kurtosis 
Kurtosis is a statistical measure that quantifies how heavy the tails of a distribution are compared to 

a normal distribution. 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) =
𝔼[(𝛸 − 𝜇)4]

𝜎4
 

where X is a random variable and μ and σ are the mean and the standard deviation of X. 

If 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) = 3, the distribution has the same kurtosis as the normal distribution (mesokurtic). 

If 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) < 3, the distribution is platykurtic (light tails). 

If 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) > 3, the distribution is leptokurtic (heavy tails). 

Correlation Coefficient 
The correlation coefficient 𝜌𝛸,𝛶 of two random variables X and Y, with means 𝜇𝛸 and 𝜇𝑌, is defined 

as: 

𝜌𝛸,𝛶 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝛸𝜎𝛶
 

where 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝔼[(𝑋 − 𝜇𝛸)(𝑌 − 𝜇𝑌)] 

Given two tuples (𝑥1, 𝑥2, … , 𝑥𝑛) and (𝑦1, 𝑦2, … , 𝑦𝑛), of independent and identically distributed 

observed values of two random variables X and Y with means 𝜇𝛸 and 𝜇𝑌, their correlation coefficient 

𝜌𝑋,𝑌 is defined as: 

𝜌𝑋,𝑌 =
∑ (𝑥𝑖 − 𝜇𝛸)(𝑦𝑖 − 𝜇𝑌)
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝜇𝛸)
2𝑛

𝑖=1 √∑ (𝑦𝑖 − 𝜇𝑌)
2𝑛

𝑖=1

 

The correlation coefficient quantifies the strength and direction of the linear relationship between X 

and Y. We have −1 ≤ 𝜌𝛸,𝛶 ≤ 1. If 𝜌𝛸,𝛶 = 0 it is implied that there is no linear dependency between 

the respective variables. If 𝜌𝛸,𝛶 = 1 it signifies a perfect linear relationship between the variables. If 

𝜌𝛸,𝛶 = −1 it signifies a perfect negative linear relationship. 
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Loglikelihood Function 
The likelihood function of the possibly multivariate parameter θ given the value x of the random 

variable X is defined as: 

ℒ(𝛉|𝑥) =  𝑓(𝑥|𝛉) 

where  𝑓(𝑥|𝜃) is the PDF of X given θ. 

 The likelihood and loglikehood functions of a possibly multivariate parameter θ, given a tuple 𝐱 =

(𝑥1, 𝑥2, … , 𝑥𝑛) of independent and identically distributed observed values of a random variable X, 

are defined as: 

ℒ(𝛉|𝐱) =∏ 𝑓(𝑥𝑖|𝛉)
𝑛

𝑖=1
 

𝑙(𝛉|𝐱) =∑ 𝑙𝑛(𝑓(𝑥𝑖|𝛉))
𝑛

𝑖=1
 

where  𝑓(𝑥𝑖; 𝛉) is the PDF of X. 

Quantiles 
A quantile is a statistical term that refers to dividing a probability distribution into continuous 

intervals with equal probabilities or dividing a tuple of observed values of a random variable into 

subsets with the same probability mass 𝑝𝑋(𝑥), where 𝑝𝑋(𝑥) is a function that gives the probability 

that a discrete random variable is exactly equal to some value: 

𝑝𝑋(𝑥) = 𝑃(𝑋 = 𝑥) 

Specifically, the k-th q-quantile of a probability distribution or a tuple of observed values is a 

numerical value that divides the data into q equal parts, such that exactly  
 𝑘 

 𝑞
  of the tuple of 

observed values or the underlying probability distribution is less than or equal to that value. 

The k-th q-quantile of a probability distribution with CDF 𝐹(𝑥) is given by (Hyndman and Fan 1996):   

𝑃𝑄(𝑘; 𝑞) = 𝐹−1 (
 𝑘 

 𝑞 
) 

where 𝐹−1(𝑥) is the inverse of 𝐹(𝑥). 

In the context of empirical data, the k-th q-quantile is a value that partitions the data into q equally 

probable subsets.  

Bayes Theorem 
For the purposes of our study, Bayes theorem is formulated as follows: 

 

𝑃(𝐷|𝑇) =
𝑃(𝑇|𝐷)𝑃(𝐷)

𝑃(𝑇)
=

𝑃(𝑇|𝐷)𝑃(𝐷)

𝑃(𝑇|𝐷)𝑃(𝐷) + 𝑃(𝑇|�̅�)(1 − 𝑃(𝐷))
 

where: 

𝑃(𝐷|𝑇) represents the posterior probability of having the disease given a tuple of test results 𝒛. 
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𝑃(𝑇|𝐷) denotes the likelihood of obtaining the tuple of test results 𝒛 given the presence of the 

disease. 

𝑃(𝑇|�̅�) denotes the likelihood of obtaining the tuple of test results 𝒛 given the absence of the 

disease. 

𝑃(𝐷) is the prior probability or prevalence 𝑣 of the disease. 

𝑃(𝑇) signifies the overall probability of the tuple of test results 𝒛. 

Therefore, for a parameter vector θ:  

𝑃(𝐷|𝑇) =
ℒ𝐷(𝜽|𝒛)𝑣

ℒ𝐷(𝒛|𝜽)𝑣 + ℒ�̅�(𝒛|𝜽)(1 − 𝑣)
=

𝑓𝐷(𝒛|𝜽)𝑣

𝑓𝐷(𝒛|𝜽)𝑣 + 𝑓�̅�(𝒛|𝜽)(1 − 𝑣)
 

where ℒ𝐷(𝜽|𝒛) and 𝑓𝐷(𝒛|𝜽) denote the likelihood function and the PDF in the presence of the 

disease, while ℒ�̅�(𝒛|𝜽) and 𝑓�̅�(𝒛;  𝜽) denote the respective functions in the absence of the disease. 

Q-Q plot 
A Q-Q plot is constructed by plotting the quantiles from a distribution and a tuple against each 

other. If the tuple comes from the theoretical distribution, the points in the Q-Q plot will 

approximately lie on the reference line 𝑦 = 𝑥.  

P-P plot 
A P-P plot is constructed by plotting the cumulative probabilities from a distribution and a tuple 

against each other. If the tuple comes from the theoretical distribution, the points in the P-P plot 

will approximately lie on the reference line 𝑦 = 𝑥.  

Parametric Distributions 

Normal Distribution 

Univariate 

The univariate normal distribution or Gaussian distribution is a continuous probability distribution of 

a random variable X. The general form of its PDF is: 

𝑓𝑁(𝑥; 𝜇, 𝜎) =
𝑒
−
1
2
(
𝑥−𝜇
𝜎

)
2

𝜎√2𝜋
 

where the parameter μ is the mean of X, while σ is its standard deviation, and −∞ < 𝑥 < ∞ (Forbes 

et al. 2011).   

Bivariate 

The bivariate normal distribution or Gaussian distribution is a continuous probability distribution of 

two normally distributed random variables X and Y. The general form of its PDF is: 

 

𝑓𝑁(𝑥, 𝑦; 𝜇𝑋, 𝜎𝑋, 𝜇𝑌, 𝜎𝑌, 𝜌) =
𝑒
−

1
2(1−𝜌2)

(
(𝑥−𝜇𝑋)

2

𝜎𝑋
2 −

2𝜌(𝑥−𝜇𝑋)(𝑦−𝜇𝑌)
𝜎𝑋𝜎𝑌

+
(𝑦−𝜇𝑌)

2

𝜎𝑌
2 )

2𝜋𝜎𝑋𝜎𝑌√1 − 𝜌2
 

where 𝜇𝑋 and 𝜇𝑌  are the means of X and Y, 𝜎𝑋 and 𝜎𝑌 are their standard deviations, 𝜌 their 

correlation coefficient, , −∞ < 𝑥 < ∞ , and −∞ < 𝑦 < ∞  (Forbes et al. 2011). 
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Lognormal Distribution 

Univariate 

The univariate lognormal distribution is a continuous probability distribution of a random variable X 

whose logarithm is normally distributed. The general form of its PDF is: 

𝑓𝐿(𝑥;𝑚, 𝑠) =
𝑒
(−

1
2
(
𝑙𝑛(𝑥)−𝑚

𝜎
)
2

)

𝑥𝑠√2𝜋
 

where m is the mean , s the standard deviation of 𝑙𝑛(𝑋) and 0 < 𝑥 < ∞ (Forbes et al. 2011).  

If μ and σ are the mean and the standard deviation of X we have: 

𝜇 = 𝑒𝑚+
1
2
𝑠2 

𝜎 = √𝑒2𝑚+2𝑠
2
 

Therefore, 

𝑚 = 𝑙𝑛 (
𝜇2

√𝜎2 + 𝜇2
) 

𝑠 = 𝑙𝑛 (1 +
𝜎2

𝜇2
) 

𝑓𝐿(𝑥; 𝜇, 𝜎) =
𝑒(

  
 
−
1
2

(

 
 
𝑙𝑛(𝑥)−𝑙𝑛(

𝜇2

√𝜎2+𝜇2
)

𝑙𝑛(1+
𝜎2

𝜇2
)

)

 
 

2

)

  
 

√2𝜋𝑥𝑙𝑛 (1 +
𝜎2

𝜇2
)

=
𝑒(

 
 
(2𝑙𝑛(𝑥)−2𝑙𝑛(𝜇)+𝑙𝑛(1+

𝜎2

𝜇2
))

2

8𝑙𝑛(1+
𝜎2

𝜇2
)

)

 
 

𝑥√2𝜋𝑙𝑛 (1 +
𝜎2

𝜇2
)

 

Bivariate 

The bivariate lognormal distribution is a continuous probability distribution of two lognormally 

distributed variables X and Y. If 𝑚𝑋 and 𝑚𝑌  are the means of 𝑙𝑛(𝑋) and 𝑙𝑛(𝑌), 𝑠𝑋 and 𝑠𝑌 their 

standard deviations, and 𝑟 their correlation coefficient, for 0 < 𝑥 < ∞ , and 0 < 𝑦 < ∞ , the general 

form of its PDF is (Forbes et al. 2011): 

𝑓𝐿(𝑥, 𝑦;𝑚𝑋, 𝑠𝑋 , 𝑚𝑌, 𝑠𝑌, 𝑟) =
1

𝑑
𝑒𝑎 

where 

𝑎 =
1

2
(
−(𝑙𝑛(𝑦) − 𝑚𝑌)𝑏 − (𝑙𝑛(𝑥) − 𝑚𝑋)𝑐

𝑠𝑋
2𝜎𝑌

2 − 𝑟2𝑠𝑋
2𝑠𝑌

2 ) 

𝑏 = (𝑙𝑛(𝑦) − 𝑚𝑌)𝑠𝑋
2 − 𝑟(𝑙𝑛(𝑥) − 𝑚𝑋)𝑠𝑋𝑠𝑌 

𝑐 = (𝑙𝑛(𝑥) −𝑚𝑋)𝑠𝑌
2 − 𝑟(𝑙𝑛(𝑦) −𝑚𝑌)𝑠𝑋𝑠𝑌 

𝑑 = 2𝜋𝑥𝑦√𝑠𝑋
2𝑠𝑌

2 − 𝑟2𝑠𝑋
2𝑠𝑌

2 

We have 



27 
 

𝑟 =
𝜇𝑋𝜇𝑌
𝜎𝑋𝜎𝑌

(−1+ 𝑒
𝜌√𝑙𝑛(1+

𝜎𝑋
2

𝜇𝑋
2)𝑙𝑛(1+

𝜎𝑌
2

𝜇𝑌
2)

)√𝑙𝑛 (1 +
𝜎𝑋

2

𝜇𝑋
2) 𝑙𝑛 (1 +

𝜎𝑌
2

𝜇𝑌
2) 

where 𝜇𝑋 and 𝜇𝑌  are the means of X and Y, 𝜎𝑋 and 𝜎𝑌 are their standard deviations and 𝜌 their 

correlation coefficient. 

Therefore, 

𝑓𝐿(𝑥, 𝑦; 𝜇𝑋 , 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, 𝜌) =
𝑒
𝑎𝑏+𝑐
𝑑

𝑔
 

where 

𝑎 = −2(−1+ 𝑒
𝜌√𝑙𝑛(1+

𝜎𝑋
2

𝜇𝑋
2)𝑙𝑛(1+

𝜎𝑌
2

𝜇𝑌
2)

)(𝑙𝑛(𝑥) − 𝑙𝑛 (
𝜇𝑋
2

√𝜇𝑋
2 + 𝜎𝑋

2
)) 

𝑏 = 𝑚𝑋𝑚𝑌√𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2) 𝑙𝑛 (1 +

𝜎𝑌
2

𝜇𝑌
2)(𝑙𝑛(𝑦) − 𝑙𝑛 (

𝜇𝑌
2

√𝜇𝑌
2 + 𝜎𝑌

2
)) 

𝑐 = (𝑙𝑛(𝑦) − 𝑙𝑛 (
𝜇𝑌
2

√𝜇𝑌
2 + 𝜎𝑌

2
))

2

𝜎𝑋
2 + (𝑙𝑛(𝑥) − 𝑙𝑛 (

𝜇𝑋
2

√𝜇𝑋
2 + 𝜎𝑋

2
))

2

𝜎𝑌
2 

𝑑 = 2

(

 
 
(−1+ 𝑒

𝜌√𝑙𝑛(1+
𝜎𝑋
2

𝜇𝑋
2)𝑙𝑛(1+

𝜎𝑌
2

𝜇𝑌
2)

)

2

𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2) 𝑙𝑛 (1 +

𝜎𝑌
2

𝜇𝑌
2)𝜇𝑋

2𝜇𝑌
2 − 𝜎𝑋

2𝜎𝑌
2

)

 
 

 

𝑔 = 2𝜋𝑥𝑦√−(−1 + 𝑒
𝜌√𝑙𝑛(1+

𝜎𝑋
2

𝜇𝑋
2)𝑙𝑛(1+

𝜎𝑌
2

𝜇𝑌
2)

)

2

𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2) 𝑙𝑛 (1 +

𝜎𝑌
2

𝜇𝑌
2)𝜇𝑋

2𝜇𝑌
2 + 𝜎𝑋

2𝜎𝑌
2 

Gamma Distribution 

Univariate 

The univariate Gamma distribution is a continuous probability distribution of a random variable X. 

The general form of its PDF is: 

𝑓𝐺(𝑥; 𝑘, 𝜗) =
1

Γ(𝑘)𝜗𝑘
𝑥𝑘−1𝑒−

𝑥
𝜗 

where k is a shape parameter, θ a scale parameter , Γ(𝑢) the gamma function and 0 < 𝑥 < ∞ 

(Forbes et al. 2011).  

The mean μ and the standard deviation σ of X, are calculated as following: 

𝜇 = 𝑘𝜗 

𝜎 = 𝑘𝜗2 
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Therefore, 

𝑘 =
𝜇2

𝜎2
 

𝜗 =
𝜎2

𝜇
 

and 

𝑓𝐺(𝑥; 𝜇, 𝜎) =
1

𝛤 (
𝜇2

𝜎2
) (
𝜎2

𝜇 )

𝜇2

𝜎2

𝑥
(
𝜇2

𝜎2
−1)

𝑒
−
𝑥 𝜇
𝜇2  

 

Bivariate 

The bivariate Gamma distribution is a continuous probability distribution of two variables X and Y. 

For 0 < 𝑥 < ∞  and 0 < 𝑦 < ∞,  the copula version of its PDF is: 

𝑓𝐺(𝑥, 𝑦; 𝑘𝑋, 𝑘𝑌, 𝜗𝑋, 𝜗𝑌, 𝜌) =
𝑎𝑏

𝑐
 

 

where 

𝑎 = 𝑒(

 
 
 
𝑒𝑟𝑓𝑐−1(2𝑄(𝑘𝛶,0,

𝑦
𝜗𝑌
))

2

+

(−𝜌𝑒𝑟𝑓𝑐−1(2𝑄(𝑘𝑋,0,
𝑥
𝜗𝛸
))+𝑒𝑟𝑓𝑐−1(2𝑄(𝑘𝛶,0,

𝑦
𝜗𝛶
)))

2

−1+𝜌2
−
𝑦
𝜗𝛶
−
𝑥
𝜗𝛸

)

 
 
 

 

𝑏 = 𝑥−1+𝑘𝑋𝑦−1+𝑘𝛶𝜗𝛶
−𝑘𝛶𝜗𝛸

−𝑘𝑋 

𝑐 = √1 − 𝜌2𝛤(𝑘𝑋)𝛤(𝑘𝛶) 

and where 𝑘𝑋, 𝑘𝑌 are shape parameters, 𝜗𝑋, 𝜗𝑌 are scale parameters and 𝜌 the correlation 

coefficient of X and Y. 

If 𝜇𝑋 and 𝜇𝑌  are the means of X and Y, 𝜎𝑋 and 𝜎𝑌 their standard deviations, and 𝜌 their correlation 

coefficient, it can be shown that: 

𝑓𝐺(𝑥, 𝑦; 𝜇𝑋 , 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, 𝜌) =
𝑎𝑏

𝑐
 

where 

𝑎 = 𝑒(

 
 
 
 

𝑒𝑟𝑓𝑐−1(2𝑄(
𝜇𝑌
2

𝜎𝑌
2 ,0,

𝑦𝜇𝑌
𝜎𝑌
2 ))

2

+

(−𝜌 𝑒𝑟𝑓𝑐−1(2𝑄(
𝜇𝑋
2

𝜎𝑋2
,0,
𝑥𝜇𝑋
𝜎𝑋2

))+𝑒𝑟𝑓𝑐−1(2𝑄(
𝜇𝑌
2

𝜎𝑌
2,0,

𝑦𝜇𝑌
𝜎𝑌
2 )))

2

−1+𝜌2
−
𝑥𝜇𝑋
𝜎𝑋2

−
𝑦𝜇𝑌
𝜎𝑌
2

)

 
 
 
 

 

𝑏 = 𝑥
(−1+

𝜇𝑋
2

𝜎𝑋2
)
𝑦
(−1+

𝜇𝑌
2

𝜎𝑌
2)
𝜎𝑋

−
2𝜇𝑋

2

𝜎𝑋2𝜇𝑋

𝜇𝑋
2

𝜎𝑋2𝜇𝑌

𝜇𝑌
2

𝜎𝑌
2

𝜎𝑌

−
2𝜇𝑌

2

𝜎𝑌
2
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𝑐 = √1 − 𝜌2𝛤(
𝜇𝑋
2

𝜎𝑋2
)𝛤(

𝜇𝑌
2

𝜎𝑌
2) 

 

Copulas 
If 𝜇𝑋 and 𝜇𝑌  are the means of the variables X and Y, 𝜎𝑋 and 𝜎𝑌 their standard deviations, and 𝜌 their 

correlation coefficient, it can be shown that the bivariate PDF of the other copulas of the program 

are defined as follows: 

X: Normally Distributed – Y: Lognormally Distributed 

For −∞ < 𝑥 < ∞ , and < 𝑦 < ∞,   

𝑓𝑁𝐿(𝑥, 𝑦; 𝜇𝑋, 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, 𝜌) =
𝑒𝑐𝑑

𝑔
 

where 

𝑎 = −

2𝑙𝑛(𝑦) − 2𝑙𝑛(𝜇𝑌) + 𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2)

2√2𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2)

2

−

(2𝑙𝑛(𝑦) − 2𝑙𝑛(𝜇𝑌) + 𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2))

2

8𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2)

 

𝑏 = −(

 
 
 
 2𝑙𝑛(𝑦) − 2𝑙𝑛(𝜇𝑌) + 𝑙𝑛 (1 +

𝜎𝑌
2

𝜇𝑌
2)

2√2√𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2)

√𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2) 𝜇𝑌 + 𝜌𝜎𝑌𝑒𝑟𝑓𝑐

−1 (2𝑄 (
𝜇𝑋
2

𝜎𝑋
2 , 0,

𝑥𝜇𝑋
𝜎𝑋
2 ))

)

 
 
 
 

2

𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2) 𝜇𝑌

2 − 𝜌2𝑠𝜎𝑌
2

 

𝑐 = 𝑎 + 𝑏 −
𝑥𝜇𝑋

𝜎𝑋
2  

𝑑 = (
𝑥𝑚𝑋

𝜎𝑋
2 )

𝜇𝑋
2

𝜎𝑋
2

 

𝑔 = 𝑥𝑦𝛤 (
𝜇𝑋
2

𝜎𝑋
2)

√
  
  
  
  
  

2𝜋𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2)

(

 
 
1 −

𝜌2𝑠𝜎𝑌
2

𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2) 𝜇𝑌

2

)

 
 

 

X: Lognormally Distributed – Y: Normally Distributed 

For 0 < 𝑥 < ∞ , and −∞ < 𝑦 < ∞,   

𝑓𝐿𝑁(𝑥, 𝑦; 𝜇𝑋 , 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, 𝜌) =
𝑒𝑐𝑑

𝑔
 

where 
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𝑎 = 𝑒𝑟𝑓𝑐−1 (2𝑄 (
𝜇𝑌
2

𝜎𝑌
2 , 0,

𝑦𝜇𝑌

𝜎𝑌
2 ))

2

−

(2𝑙𝑛(𝑥) − 2𝑙𝑛(𝜇𝑋) + 𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2))

2

8𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2)

 

𝑏 = −(

 
 
 
 

𝑒𝑟𝑓𝑐−1 (2𝑄 (
𝜇𝑌
2

𝜎𝑌
2 , 0,

𝑦𝜇𝑌
𝜎𝑌
2 ))√𝑙𝑛 (1 +

𝜎𝑋
2

𝜇𝑋
2) 𝜇𝑋 + 𝜌𝜎𝑋

(

 
 
 2𝑙𝑛(𝑥) − 2𝑙𝑛(𝜇𝑋) + 𝑙𝑛 (1 +

𝜎𝑋
2

𝜇𝑋
2)

2√2√𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2)

)

 
 
 

)

 
 
 
 

2

𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2)𝜇𝑋

2 − 𝜌2𝜎𝑋
2

 

𝑐 = 𝑎 + 𝑏 −
𝑦𝜇𝑌

𝜎𝑌
2  

𝑑 = (
𝑦𝜇𝑌

𝜎𝑌
2 )

𝑚𝑌
2

𝑠𝑌
2

 

𝑔 =

(

 
 
√2𝜋𝑥𝑦𝛤 (

𝜇𝑌
2

𝜎𝑌
2)√𝑙𝑛 (1 +

𝜎𝑋
2

𝜇𝑋
2)√

1 −
𝜌2𝜎𝑋

2

𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2) 𝜇𝑋

2

)

 
 

 

X: Normally Distributed – Y: Gamma Distributed 

For −∞ < 𝑥 < ∞ , and 0 < 𝑦 < ∞,   

𝑓𝑁𝐺(𝑥, 𝑦; 𝜇𝑋 , 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, 𝜌)

=

𝑒(

 
 
 
 

𝑒𝑟𝑓𝑐−1(2𝑄(
𝜇𝑌
2

𝜎𝑌
2,0,

𝑦𝜇𝑌
𝜎𝑌
2 ))

2

−
(𝑥−𝜇𝑋)

2

2𝜎𝑋
2 +

(𝑥𝜌−𝜌𝜇𝑋+√2𝜎𝑋𝑒𝑟𝑓𝑐
−1(2𝑄(

𝜇𝑌
2

𝜎𝑌
2 ,0,

𝑦𝜇𝑌
𝜎𝑌
2 )))

2

2(−1+𝜌2)𝜎𝑋
2 −

𝑦𝜇𝑌
𝜎𝑌
2

)

 
 
 
 

(
𝑦𝜇𝑌
𝜎𝑌
2 )

𝜇𝑌
2

𝜎𝑌
2

𝑦𝜎𝑋√2𝜋(1 − 𝜌2)𝛤 (
𝑦𝜇𝑌
𝜎𝑌
2 )

 

 

X: Gamma Distributed– Y: Normally Distributed 

For 0 < 𝑥 < ∞ , and −∞ < 𝑦 < ∞,   

𝑓𝐺𝑁(𝑥, 𝑦; 𝜇𝑋, 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, 𝜌) =

𝑒(

 
 
 
−
𝑥𝜇𝑋
𝑠𝑋
2 +

(𝑦−𝑚𝑌+√2𝜌𝑒𝑟𝑓𝑐
−1(2𝑄(

𝜇𝑋
2

𝜎𝑋
2 ,0,

𝑥𝜇𝑋
𝜎𝑋
2 ))𝜎𝑌)

2

2(−1+𝜌2)𝜎𝑌
2

)

 
 
 

(
𝑥𝜇𝑋
𝜎𝑋
2 )

𝜇𝑋
2

𝜎𝑋
2

𝑥𝜎𝑌√2𝜋(1 − 𝜌2)𝛤 (
𝜇𝑋
2

𝑠𝜎𝑋
2)

 



31 
 

X: Lognormally Distributed – Y: Gamma Distributed 

For 0 < 𝑥 < ∞ , and 0 < 𝑦 < ∞,   

𝑓𝐿𝐺(𝑥, 𝑦; 𝜇𝑋, 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, 𝜌) =
𝑒𝑐

𝑑
 

where 

𝑎 =

(

 
 
 2𝑙𝑛(𝑦) − 2𝑙𝑛(𝜇𝑌) + 𝑙𝑛 (1 +

𝜎𝑌
2

𝜇𝑌
2)

2√2𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2)

)

 
 
 

2

−

(2𝑙𝑛(𝑦) − 2𝑙𝑛(𝜇𝑌) + 𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2))

2

8𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2)

 

𝑏 = −(

 
 

(

 −𝑙𝑛(𝑦) + 𝑙𝑛(𝜇𝑌) −

𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2)

2

)

 𝑚𝑌𝜎𝑋 + 𝜌(𝑥 − 𝜇𝑋)𝜎𝑌

)

 
 

2

2𝜎𝑋
2 (𝑙𝑛 (1 +

𝜎𝑌
2

𝜇𝑌
2) 𝜇𝑌

2 − 𝜌2𝜎𝑌
2)

 

𝑐 = 𝑎 + 𝑏 −
(𝑥 − 𝜇𝑋)

2

2𝜎𝑋
2  

𝑑 = 2𝜋𝑦𝜎𝑋

√
  
  
  
  
  

𝑙𝑛 (1 +
𝜎𝑌
2

𝜇𝑌
2)

(

 
 
1 −

𝜌2𝜎𝑌
2

𝑙𝑛 (1 +
𝑠𝑌
2

𝜇𝑌
2) 𝜇𝑌

2

)

 
 

 

X: Gamma Distributed – Y: Lognormally Distributed 

For 0 < 𝑥 < ∞ , and 0 < 𝑦 < ∞,   

𝑓𝐺𝐿(𝑥, 𝑦; 𝜇𝑋 , 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, 𝜌) =
𝑒𝑎+𝑏

𝑐
 

where 

 

𝑎 = −

(2𝑙𝑛(𝑥) − 2𝑙𝑛(𝜇𝑋) + 𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2))

2

8𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2)
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𝑏 = −(

 
 
 
 

√𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2) 𝜇𝑋(𝑦 − 𝜇𝑌) − 𝜌𝜎𝑋𝜎𝑌

(

 
 
 2𝑙𝑛(𝑥) − 2𝑙𝑛(𝜇𝑋) + 𝑙𝑛 (1 +

𝜎𝑋
2

𝜇𝑋
2)

2√𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2)

)

 
 
 

)

 
 
 
 

2

2𝜎𝑌
2 (𝑙𝑛 (1 +

𝜎𝑋
2

𝜇𝑋
2)𝑚𝑋

2 − 𝜌2𝜎𝑋
2)

 

𝑐 = 2𝜋𝑥𝜎𝑌

√
  
  
  
  
  

𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2)

(

 
 
1 −

𝜌2𝜎𝑋
2

𝑙𝑛 (1 +
𝜎𝑋
2

𝜇𝑋
2)𝑚𝑋

2

)

 
 

 

Nonparametric Distributions 

Histograms 
A histogram is a graphical representation of the distribution of a tuple of observed values of a 

variable X. If X is a continuous random variable the histogram is an estimate of the probability 

distribution X. To construct a histogram: 

1. The range of the tuple of variable’s observed values is divided into a set of bins. 

2. The variable’s observed values are sorted into each bin. 

3. The number of variable’s observed values that fall into each bin are counted. 

The height of each bar in the histogram corresponds to the count of variable’s observed values in 

bin. The width of each bar corresponds to the width of the bin. 

The Knuth method (Knuth 2019) is a Bayesian approach to determining the optimal number of bins 

for a histogram. It calculates the optimal bin width by maximizing a likelihood function, considering 

the variable’s observed values as independently and identically distributed. 

Given a tuple (𝑥2, … , 𝑥𝑛) of observed values of a variable X, we find the optimal bin edges  𝐁 =

(𝑏1, 𝑏2, … , 𝑏𝑘), by maximizing the following likelihood function: 

ℒ(𝐁|𝑋) = 𝑛!(∏
1

𝑛𝑖!

𝑘

𝑖=1

)
1

𝑘𝑛
1

(𝑏𝑘 − 𝑏0)
𝑛

 

where n is the total number of observed values, k is the number of bins, 𝑛𝑖 is the number of 

observed values in the i-th bin, and 𝑏0 and 𝑏𝑘 are the minimum and maximum bin edges, 

respectively. 

There are variations of histograms where the height of bars represents relative frequencies 

(proportions or probabilities) instead of raw counts. In such cases, the area under the histogram 

integrates to 1. 

Kernel Density Estimators 
Given a tuple of independent and identically distributed observed values (𝑥1, 𝑥2, … , 𝑥𝑛) of a random 

variable X, the univariate KDE 𝑓𝐾(𝑥; 𝑛, ℎ) is defined as (Gramacki 2017): 
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𝑓𝐾(𝑥; 𝑛, ℎ) =
1

𝑛ℎ
∑ 𝐾(

𝑥 − 𝑥𝑖
ℎ

)
𝑛

𝑖=1
 

where: 

1. n is the number of the observed values of the variable,  

2. h is the bandwidth, a positive scalar that determines the width and smoothness of the kernel. If 

ℎ is too small, the estimate could be overly sensitive to noise in the data, leading to a "noisy" 

multimodal estimate. Conversely, if ℎ is too large, the estimate could be overly smooth, 

potentially obscuring meaningful features in the data.  

3. 𝐾(𝑢) is the kernel function, which satisfies the properties: 

3.1. ∫𝐾(𝑢)𝑑𝑢 = 1 

3.2. ∫𝑢2𝐾(𝑢)𝑑𝑢 < ∞ 

Given two tuples of independent and identically distributed observed values (𝑥1, 𝑥2, … , 𝑥𝑛) and 

(𝑦1, 𝑦2, … , 𝑦𝑛) of two random variables X and Y, the bivariate KDE 𝑓(𝑥, 𝑦; 𝑛, ℎ1, ℎ2) is defined as 

(Gramacki 2017): 

 

𝑓(𝑥, 𝑦; 𝑛, ℎ1, ℎ2) =
1

𝑛|𝐻|
1
2

∑𝐾((𝑧 − 𝑧𝑖)
𝑇𝐻−1(𝑧 − 𝑧𝑖))

𝑛

𝑖=1

 

where 

𝑧 = [
𝑥
𝑦] 

𝑧𝑖 = [
𝑥𝑖
𝑦𝑖
] 

𝐻 = [
ℎ1
2 𝜌ℎ1ℎ2

𝜌ℎ1ℎ2 ℎ2
2 ] 

and ρ is the correlation coefficient of the two tuples of datapoints. 

A kernel function 𝐾(𝑢) could be conceptualized as a weighting mechanism in the context of kernel 

density estimation. For every observed value 𝑢𝑖 the kernel function 𝐾(𝑢) superimposes a localized 

influence or "perturbation" centered at 𝑢𝑖. The magnitude and dispersion of this perturbation are 

governed by the properties of 𝐾(𝑢)  and the bandwidth parameter ℎ, respectively. Specifically, the 

amplitude of the perturbation at 𝑢𝑖 is contingent upon the value of 𝐾(𝑢𝑖), while the scale or spread 

of this influence is modulated by ℎ. This ensures that each data point contributes to the overall 

density estimate in a manner that is both localized and smooth, with the degree of localization and 

smoothness being adjustable via the choice of 𝐾(𝑢)  and ℎ. 

The program uses the Gaussian kernel function: 

𝐾(𝑢) =
1

√2𝜋
𝑒−

𝑢2

2  

Univariate Kernel Density Estimator 

𝑓(𝑥; 𝑛, ℎ) =
1

𝑛ℎ
∑

1

√2𝜋
𝑒−

(
𝑥−𝑥𝑖
ℎ

)
2

2
𝑛

𝑖=1
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Bivariate Kernel Density Estimator 

𝑓(𝑥, 𝑦; 𝑛, ℎ1, ℎ2) =
1

2𝜋𝑛|𝐻|
1
2

∑𝑒−
1
2
(𝑧−𝑧𝑖)

𝑇𝐻−1(𝑧−𝑧𝑖)

𝑛

𝑖=1

 

where 

𝑧 = [
𝑥
𝑦] 

𝑧𝑖 = [
𝑥𝑖
𝑦𝑖
] 

𝐻 = [
ℎ1
2 𝜌ℎ1ℎ2

𝜌ℎ1ℎ2 ℎ2
2 ] 

Appendix II 

Software Availability and requirements 
Program name: Bayesian Diagnosis 

Project home page: https://www.hcsl.com/Tools/BayesianDiagnosis/  (accessed 6 September 2023) 

Operating systems: Microsoft Windows, Linux, Apple iOS 

Programming language: Wolfram Language 

Other software requirements: 

 For running the program: Wolfram Player®, freely available at: https://www.wolfram.com/player/  

(accessed 31 August 2023) or Wolfram Mathematica®. 

For editing the datasets: Wolfram Mathematica®. 

System requirements: Intel® i9™ or equivalent CPU and 32 GB of RAM 

License: Attribution—Noncommercial—ShareAlike 4.0 International Creative Commons License 

Appendix III 

A Note about the Program 

About the program controls 
The numerical settings are defined by the user with menus or sliders. Sliders can be finely 
manipulated by holding down the alt key or opt key while dragging the mouse. They be even more 
finely manipulated by also holding the shift and/or ctrl keys. 

Dragging with the mouse rotates the three-dimensional plots, while dragging with the mouse while 
pressing the ctrl, alt, or opt keys zooms in or out. 

Range of input parameters 
v : 0.010 – 0.500 

μ : 0.01 – 10000.00 

𝜎 : 0.01 – 3000.00 
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ρ : –1.000 – 1.000 

h : 0.01 – 2.00 

x : 0.01 – 10000.00  

y : 0.01 – 10000.00 

Datasets 

The software is preloaded with the following datasets: 

d1: Quantitative measurements of the first measurand (FPG) from diseased individuals (diabetic 

patients), aged 40-60. 

d2: Quantitative measurements of the second measurand (HbA1c) from diseased individuals 

(diabetic patients), aged 40-60. 

nd1: Quantitative measurements of the first measurand (FPG) from nondiseased individuals 

(nondiabetic patients), aged 40-60. 

nd2: Quantitative measurements of the second measurand (HbA1c) from nondiseased individuals 

(nondiabetic patients), aged 40-60. 
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