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  Abstract 
Background 
In clinical chemistry, a number of studies shows that 
the probability of very large errors is much greater than 
expected from the Gaussian distribution. In addition, it 
has been empirically found that the behavior of nonlin-
ear complex systems is often asymptotically exponen-
tial. Consequently, we may assume that the error of 
some analytical systems may be approximated by the 
sum of a linear component of error with Gaussian dis-
tribution and a nonlinear component with Laplacian. 
Then, the probability density function (pdf) of the total 
error is approximated by the convolution integral of the 
Gaussian and the Laplacian pdf.  
Methods 
To explore the assumption of a nonlinear component of 
the analytical error I have evaluated this distribution 
and calculated various quality control related statistics 
with numerical methods.  
Results 
Large errors are much more probable with the pro-
posed distribution than with the Gaussian. Simulated 
series of measurements with the proposed distribution 
often meet the criteria for normality. The critical errors 
and the probabilities for critical error detection are less 
than the respective ones of the Gaussian distribution. 
The probabilities for false rejection are greater.  
Conclusion 
To optimize the quality control planning process, we 
should explore the possibility that there exists a nonlin-
ear component of the analytical error.  
Keywords:  
Analytical error, exponential distribution, Laplacian 
distribution, nonlinear error, quality control 
 

1. Introduction 
 
In clinical chemistry, it is usually assumed that the dis-
tribution of the analytical error is normal or Gaussian. 
Therefore, very large analytical errors are considered 
very improbable. This assumption of the normality of 
the analytical error is implied by the successful appli-
cation of the linearization to the analytical systems. 
Accordingly, the analytical error may be represented as 
the sum of many small contributions none of which 
contributes very much to the total error. 
A number of studies show that the probability of very 
large analytical errors is much greater than expected. 
Witte et al. have shown that the average probability of 
errors greater than seven standard deviations (SD)  
equals 4.47 ⋅10–4  13. This probability is 1.7⋅108   times 
greater than it is expected from the Gaussian distribu-
tion.  
In a brief outline of the emerging field of the statistics 
of complexity, Goldenfeld and Kadanoff have pointed 
out that the behavior of nonlinear complex systems is 
rarely normal 3. It has been empirically found that the 

probability density function (pdf) of these systems for 
large deviations takes the form of an exponential or 
Laplacian distribution. Large errors are much more 
probable with the exponential and Laplacian distribu-
tions than with the Gaussian. 
 
Therefore, it is possible that there are nonlinear com-
ponents of the analytical error of some analytical sys-
tems, contributing substantially to the total error. Con-
sequently, we may assume that the error of some ana-
lytical systems may be approximated by the sum of a 
linear component of error with Gaussian distribution 
and a nonlinear component with Laplacian distribution.  
Assuming that these components have means equal to 
zero, and are statistically independent, then the pdf  
f(z,l) of the total error of these analytical systems is 
approximated by the convolution integral of the Gaus-
sian pdf with standard deviation sg, and the Laplacian 
pdf, with a scale parameter   l · sg, where l is a weight-
ing factor : 
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The variance and the mean of the distribution are re-
spectively:  
Var(l)= sg

2 +2 l2 sg
2       

    
µ(l)=0      
    
The maximum likelihood function ml(l) given a series 
of n measurements xi with the proposed pdf f(xi,l), a 
weighting factor l, and a standard deviation s, is: 
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This study presents this pdf and compares it with the 
Gaussian distribution. In addition, it presents plots of 
quality control (QC) related statistics for various values 
of l, including the probabilities for critical error detec-
tion. As critical errors are considered the maximum 
allowable random and systematic analytical errors, 
“defined in such a way that an upper bound has been 
set on the (clinical) type I error” 7. The clinical type I 
error is the probability for rejection of the true hy-
pothesis that there is no significant change of the ana-
lyte of a patient. The hypothesis is rejected when the 
observed change of the analyte is greater than the 
maximum medically allowable analytical error 5. 
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2. Methods 
The proposed pdf and the respective cumulative distri-
bution function (cdf) were evaluated using numerical 
methods. The critical errors were calculated as previ-
ously described 4, assuming that the upper bound of the 
probability of a type I clinical error was equal to 0.01. 
The probabilities for error detection and for false rejec-
tion were calculated with numerical methods, assuming 
one control measurement per run, and that the control 
measurements were independent and identically dis-
tributed.  
As quality control rules S(y) are defined these that re-
ject an analytical run if the absolute value of the differ-
ence of at least one control measurement from the ex-
pected mean exceeds y standard deviations (SD). 
The normality hypothesis was tested using the meas-
ures of skewness and kurtosis, on the significance level 
of 0.01 2. The probabilities for rejection of this hy-
pothesis were estimated using 10,000 simulated series 
of 100 or 1000 measurements respectively, with the 
proposed distribution. 
The numerical computations, the simulations, and the 
plots were done with Mathematica, Version 4.1 14 
(Wolfram Research, Champaign, Illinois, USA). 

3. Results 
 
The results are presented on Table 1 and on Figures 1-
15. The errors are measured in SD units. 
 

 
Figure 1: The Gaussian, the proposed, and the Lapla-
cian pdfs 
 
The pdfs of the Gaussian distribution, of the proposed 
distribution for l equal to 0.5, 1.0, 2.0, and 3.0, and of 
the Laplacian distribution are presented on Figure 1, 
showing that the kurtosis of the proposed distribution is 
grater than the kurtosis of the Gaussian, and it is in-
creasing with l. 

 
Figure 2: Logarithmic plots of the Gaussian, the pro-
posed, and the Laplacian pdfs 
 

 
Figure 3: Logarithmic plots of the Gaussian, the pro-
posed, and the Laplacian cdfs 

 
Figures 2 and 3 are the logarithmic plots of the same 
pdfs and the respective cdfs, showing differences of 
some orders of magnitude of the probabilities of the 
very large errors. 
The Figure 4 compares the Gaussian and the proposed 
distribution and shows the logarithmic plot of the ratio 
r between the probabilities of an error > x SD with the 
proposed distribution and an error > x SD with the 
Gaussian distribution. Table 1 presents some of these 
ratios. They are increasing with l and x. 
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Figure 4: Logarithmic plots of the ratios r between the 
probability of an error >x SD with the proposed distri-
bution and an error >x SD with the Gaussian distribu-
tion 
 
Table 1: The table shows how much more probable is 
an error with the proposed distribution than with the 
Gaussian distribution 

 >2SD >3SD >4SD > 5 SD > 6 SD >7 SD 
l= 0.5 1.04 1.74 6.48 62 1.6 103 1.0 105 
l= 0.7 1.07 2.47 14.1 2.1 102 8.1 103 8.4 105 
l= 1.0 1.13 3.38 25.5 5.0 102 2.6 104 3.5 106 
l= 2.0 1.24 4.66 44.3 1.1 103 7.1 104 1.2 107 
l= 3.0 1.27 5.01 49.9 1.3 103 8.8 104 1.6 107 

 
The Figure 5 presents the probabilities for rejection of 
the normality hypothesis with the proposed distribution 
versus l. The series are Gaussian for l = 0. 
 

 
Figure 5: The estimated probabilities for rejection of 
the normality hypothesis of simulated series of 100 and 
1000 measurements with the proposed distribution, 
versus l 
 
The Figures 6-7 present the critical random and sys-
tematic errors with the Gaussian and the proposed dis-
tributions versus the total allowable analytical error. 
The critical errors are decreasing with l.  
 

 
Figure 6: The critical random error (REC) versus the 
total allowable analytical error (TAE), with the Gaus-
sian and the proposed distributions 
 

 
Figure 7: The critical systematic error (SEC) versus 
the total allowable analytical error (TAE), with the 
Gaussian and the proposed distributions 
 
The Figures 8-9 present the probabilities for critical 
random and systematic error detection using the S(3) 
QC rule. These probabilities are decreasing with l, as 
well. 
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Figure 8: The probabilities for critical random error 
detection (Prced) with the Gaussian and the proposed 
distributions, using the QC rule S(3) 
 

 
Figure 9: The probabilities for critical systematic error 
(Psced) detection with the Gaussian and the proposed 
distributions, using the QC rule S(3) 

 
Figure 10: The probabilities for false rejection (Pfr) of 
the QC rules S(3.0), S(3.5), and S(4.0), versus l, with 
the proposed distribution 
 
The Figure 10 presents the plot of the probability for 
false rejection of the QC rules S(3.0), S(3.5), and S(4.0) 
versus l, with the proposed distribution.  
 

 
Figure 11: The probabilities for false rejection (Pfr) of 
the QC rules S(a), versus a, with the Gaussian and the 
proposed distributions 
 
The Figure 11 presents the probabilities for false rejec-
tion of the QC rules S(a), versus a, with the Gaussian 
and the proposed distributions. The probabilities for 
false rejection are increasing with l.  
Finally, the figures 12-15 present the probabilities for 
error detection of the QC rules S(3), and S(4),  with the 
Gaussian and the proposed distributions.  
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Figure 12: The probabilities for random error detection 
(Pred) of the QC rule S(3), with the Gaussian and the 
proposed distributions 
 

 
Figure 13: The probabilities for systematic error detec-
tion (Psed) of the QC rule S(3), with the Gaussian and 
the proposed distributions 

 
Figure 14: The probabilities for random error (Pred) 
detection of the QC rule S(4), with the Gaussian and 
the proposed distributions 
 

 
 
Figure 15: The probabilities for systematic error detec-
tion (Psed) of the QC rule S(4), with the Gaussian and 
the proposed distributions 

4. Discussion  
 
Analytical chemistry is usually nonlinear as chemical 
reactions with strictly first-order kinetics are rare 10, 12. 
In addition, the analytical systems in clinical chemistry 
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are becoming increasingly complex, as it is demon-
strated by the development of the ultra sensitive assays. 
As Goldenfeld and Kadanoff have pointed out, im-
probable events are much more likely with complex 
nonlinear systems 3. Their probability can often be ap-
proximated by an asymptotically exponential 11  or 
Laplacian distribution.  
The exponential distribution is quite common in phys-
ics and physical chemistry. In addition, assuming that x 
is a random variable distributed exponentially and h>0, 
then the ratio between the probabilities P(h)/P(x>h) is 
independent of h. Consequently, it is scale invariant. 
Scale invariance is often met in complex nonlinear 
systems 1 and it is a basic concept of the fractal geome-
try 8.  
However, analytical systems can be approximated by 
linear models that imply a Gaussian distribution of the 
analytical error. Nevertheless, linear models fail to ex-
plain the experimental finding that in clinical chemistry 
very large errors are much more probable than it is 
expected with the Gaussian distribution 13.  
Although, some of the large errors are assignable-cause 
errors, I suggest that there is a nonlinear component of 
error that is inherent in the analytical processes. In ad-
dition I propose that the error of some analytical sys-
tems may be approximated by the sum of a linear com-
ponent of error with Gaussian distribution and a 
nonlinear component with Laplacian distribution. Con-
sequently, some measurements that are considered as 
outliers assuming the Gaussian distribution are prob-
able with the proposed distribution.  
The estimated probabilities for rejection of the normal-
ity hypothesis of simulated series of measurements 
with the proposed distribution and l<0.7, are approxi-
mately equal to the respective probabilities of the 
Gaussian series of measurements (Figure 5), although 
the probabilities for errors >7SD are up to six orders of 
magnitude greater than the respective ones of the 
Gaussian distribution (Table 1). Accordingly, small 
series of measurements with the proposed distribution 
could be considered as Gaussian, using some tests of 
normality.  
Assuming the proposed distribution, the critical ran-
dom and systematic errors can be significantly less 
than the respective ones of the Gaussian distribution 
(Figures 6-7). In addition, the probabilities for critical 
random and systematic error detection are significantly 
less (Figures 8-9). The probabilities for false rejection 
are greater than the respective probabilities with the 
Gaussian distribution (Figures 10-11). The probabili-
ties for error detection differ as well (Figures 12-15). 
Therefore, the existence of a nonlinear component of 
error affects significantly QC. To improve the QC 
planning process 15 we should explore the existence of 
a nonlinear component of error, including the so-called 
“outliers” in the series of the analytical measurements.  
The maximum likelihood function can be used to esti-
mate the parameter l of very large series of measure-
ments xi with the proposed distribution f(xi,l), but fur-
ther research is needed: 

a) To select useful 12 goodness-of fit-tests for the pro-
posed distribution, possibly based on the empirical 
distribution functions statistics 9. 
b) To explore alternative probability density functions, 
possibly asymptotically exponential 11, that fit the ex-
perimental data. 
c) To explore additional nonlinear components of the 
analytical error, possibly caused by random multiplica-
tive processes 6.  
d) To optimize the QC planning process assuming a 
nonlinear component of the analytical error, with nu-
merical methods as well as with powerful heuristic 
tools as the genetic algorithms 4, 5.  

5. Conclusion 
In conclusion, the experimentally found probabilities of 
very large analytical errors imply the existence of a 
nonlinear component of the analytical error that affects 
QC.  
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 8.  Abbreviations 
The following non standard abbreviations are used in 
the figures: 
p: Probability 
SD: Standard Deviation 
r: Ratio 
REC: Critical Random Error (in SD units) 
SEC: Critical Systematic Error (in SD units) 
TAE: Total Allowable Analytical Error (in SD units)  
Prced: Probability for Random Critical Error Detection  
Psced: Probability for Systematic Critical Error Detec-
tion 
Pfr: Probability for False Rejection 
Pred: Probability for Random Error Detection 
RE: Random Error (in SD units)  
Psed: Probability for Systematic Error Detection 
SE: Systematic Error (in SD units)  
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